• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Números complicados - Urgente!

Números complicados - Urgente!

Mensagempor bruno_donizeti » Sex Jun 22, 2012 04:24

Olá a todos!
Estou tentando resolver um problema, porém não estou conseguindo encontrar alguma recorrência.
Preciso identificar a relação deste problema e posteriormente desenvolver um algoritmo computacional que o resolva.
Por enquanto o único padrão que encontrei foi os múltiplos de 7 e 5 o resto ainda está nebuloso em minha mente.
Será que alguém pode me ajudar!

Segue o problema citado:

"Identificar como um subconjunto dos números de 1 a 1000 podem ser escritos usando-se expressões aritmeticas que tem apenas os seguintes elementos:
5, 7, (, ), +, - e *.
Por exemplo, abaixo estão representadas as expressões para os numeros de 30 a 35.  E importante notar que as expressões devem ser tao curtas quanto possível, pois seria simples demais achar apenas a expressão equivalente a 1 e depois soma-la tantas vezes quanto necessárias para se obter um numero. O numero de parenteses tambem deve ser o minimo possvel.
O grau de complicacão de um numero e a quantidade de vezes que 5 e 7 devem ser usados na expressão que corresponde ao numero.
Assim, 30 tem grau de complicação 3, e 31 tem grau de complicacão 5. Deve-se montar expressões com o mínimo grau de complicação possível."

Exemplos:

30 = 5*7-5
31 =7-(5*5)+7*7
32 = 7+5*5
33 = 5*7+5-7
34 = 7+5*5-(5-7)
35 = 5*7



Cordialmente, Bruno.
bruno_donizeti
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Jun 22, 2012 04:20
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: formado

Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}