• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada- Como aplicar as formulas do quociente e do produto

Derivada- Como aplicar as formulas do quociente e do produto

Mensagempor karinak » Sáb Jun 16, 2012 02:08

Sou iniciante em calculo e me deparei com a seguinte questão (cos x.senx )/(tg x), não sei como aplicar as duas fórmulas ao mesmo tempo.
Obrigada pela atenção!
karinak
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Jun 15, 2012 23:41
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando

Re: Derivada- Como aplicar as formulas do quociente e do pro

Mensagempor Jhonata » Sáb Jun 16, 2012 10:58

karinak escreveu:Sou iniciante em calculo e me deparei com a seguinte questão (cos x.senx )/(tg x), não sei como aplicar as duas fórmulas ao mesmo tempo.
Obrigada pela atenção!


Bom dia!

Nessa situação você terá que aplicar a regra da Cadeia.

Reconheça a identidade tgx e a reescreva como: \frac{senx}{cosx}.

Assim, vamos obter: \frac{senx*cosx}{\frac{senx}{cosx}}. Podemos fazer um cancelamento e ficaremos apenas com cos^2x.

Tente derivar agora.

OBS: Eu acho que em questões que envolvem expressões trigonométricas, dificilmente será pedido pra usar os dois ao mesmo tempo, até porque é um pouco complicado. De qualquer forma, se você quiser aplicar essas regras, você poderia desmembrar o integrando, mas daria muito trabalho.
Por exemplo:
Reescreveria a expressão assim:
senxcosx * \frac{1}{tgx} e aplicar a regra do produto fazendo f(x)=senxcosx e g(x)=1/tgx, mas nessa aplicação você aplicaria várias vezes a regra dentro de regra, o que seria muito trabalhoso.
Abraços.
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: Derivada- Como aplicar as formulas do quociente e do pro

Mensagempor karinak » Sáb Jun 16, 2012 12:43

Obrigada pela ajuda, deu para esclarecer bastante as minhas dúvidas.Essa questão foi de uma prova do semestre passado, estou refazendo caso a proff as repita.
karinak
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Jun 15, 2012 23:41
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.