• Anúncio Global
    Respostas
    Exibições
    Última mensagem

AJUDA SOBRE EQUAÇÕES !!!!!!!!!!!!!!!!

AJUDA SOBRE EQUAÇÕES !!!!!!!!!!!!!!!!

Mensagempor fabinhotah » Ter Mai 29, 2012 20:40

E DAI PESSOAL, TD BEM, ?
ME DESCULPE SE O TÓPICO NÃO ESTÁ NO LUGAR ADEQUADO.
VOU PARTICIPAR DE UM CONCURSO NO INICIO DO PRÓXIMO MÊS, E NÃO ME LEMBRO DE COMO RESOLVER EQUAÇÕES DO PRIMEIRO GRAU COM UMA INCÓGNITA E JA PESQUISEI SOBRE O CONCURSO E CAI VÁRIAS QUESTÕES SOBRE A MATÉRIA.
MAS ESTOU INSEGURO, POIS NÃO ME LEMBRO DE MANEIRA ALGUMA COMO SE RESOLVE, E JÁ PESQUISEI POR VÁRIOS OUTROS SITES E NADA DE ABRIR MINHA MENTE.
ALGUEM PODE ME AJUDAR ?
SE SIM, AGRADEÇO E MUITO A PESSOA QUE DISPUSER DE TAL INFORMAÇÃO.
OBRIGADO,
FÁBIO.
fabinhotah
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Mai 29, 2012 19:16
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: AJUDA SOBRE EQUAÇÕES !!!!!!!!!!!!!!!!

Mensagempor LuizAquino » Ter Mai 29, 2012 21:03

fabinhotah escreveu:E DAI PESSOAL, TD BEM, ?
ME DESCULPE SE O TÓPICO NÃO ESTÁ NO LUGAR ADEQUADO.
VOU PARTICIPAR DE UM CONCURSO NO INICIO DO PRÓXIMO MÊS, E NÃO ME LEMBRO DE COMO RESOLVER EQUAÇÕES DO PRIMEIRO GRAU COM UMA INCÓGNITA E JA PESQUISEI SOBRE O CONCURSO E CAI VÁRIAS QUESTÕES SOBRE A MATÉRIA.
MAS ESTOU INSEGURO, POIS NÃO ME LEMBRO DE MANEIRA ALGUMA COMO SE RESOLVE, E JÁ PESQUISEI POR VÁRIOS OUTROS SITES E NADA DE ABRIR MINHA MENTE.
ALGUEM PODE ME AJUDAR ?
SE SIM, AGRADEÇO E MUITO A PESSOA QUE DISPUSER DE TAL INFORMAÇÃO.
OBRIGADO,
FÁBIO.


Primeiro, por favor não escreva todo o seu texto com letras maiúsculas. Isso prejudica a organização do fórum. Desde já agradecemos sua compreensão quanto a isso.

Em relação ao conteúdo, eu gostaria de recomendar que você assista a videoaula do Nerckie "Matemática Zero - Aula 13 - Equação do Primeiro Grau". Ela está disponível no canal dele no YouTube:

http://www.youtube.com/nerckie

Eu espero que a videoaula dele possa lhe ajudar a estudar o conteúdo.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: AJUDA SOBRE EQUAÇÕES !!!!!!!!!!!!!!!!

Mensagempor fabinhotah » Ter Mai 29, 2012 22:48

Desculpe-me pelas letras maiúsculas.
Logo mais assistirei e espero tirar bom proveito da video aula.
Muito obrigado.
fabinhotah
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Mai 29, 2012 19:16
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D