• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Vetores que geram R3]

[Vetores que geram R3]

Mensagempor elizabethec » Dom Mai 13, 2012 22:40

Preciso determinar se v1=(1,2,6), v2=(3,4,1), v3=(4,3,1), v4=(3,3,1) geram R3.
Eu sei que para gerar o R3 os vetores presisam formar uma combinaçao linear, e com o determinante dos ceficientes eu consigo dizer se gera ou nao gera o R3, mas nesse exercicio acima nao consigo fazer por determinate como eu faço?
elizabethec
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mai 13, 2012 20:22
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecanica
Andamento: cursando

Re: [Vetores que geram R3]

Mensagempor LuizAquino » Seg Mai 14, 2012 14:38

elizabethec escreveu:Preciso determinar se v1=(1,2,6), v2=(3,4,1), v3=(4,3,1), v4=(3,3,1) geram R3.
Eu sei que para gerar o R3 os vetores presisam formar uma combinaçao linear, e com o determinante dos ceficientes eu consigo dizer se gera ou nao gera o R3, mas nesse exercicio acima nao consigo fazer por determinate como eu faço?


Seja um vetor \vec{u}=(x,\,y,\,z) em \mathbb{R}^3. Deseja-se verificar se existem escalares a, b, c e d tais que:

(x, y, z) = a(1, 2, 6) + b(3, 4, 1) + c(4, 3, 1) + d(3, 3, 1)

Ou seja, temos o sistema:

\begin{cases}
a + 3b + 4c + 3d = x \\
2a + 4b + 3c + 3d = y \\
6a + b + c + d = z
\end{cases}

Esse sistema possui quatro incógnitas (a, b, c e d) e três equações. Ele pode ser impossível ou ele pode ser possível e indeterminado.

Vamos isolar a variável d na última equação e substituí-la nas outas duas. Ficamos apenas com:

\begin{cases}
-17a + c = x - 3z\\
-16a + b = y - 3z
\end{cases}

Temos então que:
b = y - 3z + 16a
c = x - 3z + 17a
d = 7z - x - y - 39a

Note que a incógnita a é livre. Temos então infinitas soluções (ou seja, um sistema possível e indeterminado). Isso significa que existem escalares a, b, c e d que atendem a combinação linear.

Em particular, para a = 1, temos que:
b = y - 3z + 16
c = x - 3z + 17
d = 7z - x - y - 39

Sendo assim, podemos dizer que:

(x, y, z) = 1(1, 2, 6) + (y - 3z + 16)(3, 4, 1) + (x - 3z + 17)(4, 3, 1) + (7z - x - y - 39)(3, 3, 1)

Temos então que {(1, 2, 6), (3, 4, 1), (4, 3, 1), (3, 3, 1)} é um gerador de \mathbb{R}^3 .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59