• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação diferencial] Resposta não bate com o livro

[Equação diferencial] Resposta não bate com o livro

Mensagempor Bruno G Carneiro » Sex Mai 11, 2012 15:23

Estou usando o livro Equações Diferencias, Boyce e DiPrima, não sei a edição.

Capítulo 3.7 ( Variação dos Parâmetros) , exercício 7

Encontrar a solução geral da equação diferencial dada:

y''+4y'+4y = t^{-2}e^{-2t}

Soluções linearmente independentes da equação homogênea associada:

y_1=e^{-2t} ; y_2=te^{-2t}

W = y_1*y_2' - y_1'*y_2 = e^{-4t}

y_1*g/W = t^{-2}

y_2*g/W = t^{-1}

Y(t) = e^{-2t}(1+ln|t|)

Resposta do livro para Y(t): -e^{-2t}*ln|t|
Bruno G Carneiro
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Mai 11, 2012 15:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: [Equação diferencial] Resposta não bate com o livro

Mensagempor LuizAquino » Seg Mai 14, 2012 08:40

Bruno G Carneiro escreveu:Estou usando o livro Equações Diferencias, Boyce e DiPrima, não sei a edição.

Capítulo 3.7 ( Variação dos Parâmetros) , exercício 7

Encontrar a solução geral da equação diferencial dada:

y''+4y'+4y = t^{-2}e^{-2t}

Soluções linearmente independentes da equação homogênea associada:

y_1=e^{-2t} ; y_2=te^{-2t}

W = y_1*y_2' - y_1'*y_2 = e^{-4t}

y_1*g/W = t^{-2}

y_2*g/W = t^{-1}

Y(t) = e^{-2t}(1+ln|t|)

Resposta do livro para Y(t): -e^{-2t}*ln|t|


Você esqueceu de dizer que nesse exercício é dado que t > 0. Sendo assim, podemos dizer que |t| = t.

Note que:

Y(t) = y_1(t) \int -\frac{y_2(t)g(t)}{W(y_1,\,y_2)(t)}\,dt + y_2(t) \int \frac{y_1(t)g(t)}{W(y_1,\,y_2)(t)}\,dt

= e^{-2t} \int -\frac{te^{-2t}\left(t^{-2}e^{-2t}\right)}{e^{-4t}}\,dt + te^{-2t}\int \frac{e^{-2t}\left(t^{-2}e^{-2t}\right)}{e^{-4t}}\,dt

= e^{-2t} \int -t^{-1}\,dt + te^{-2t}\int t^{-2} \,dt

= e^{-2t} \left(-\ln t\right) + te^{-2t}\left(-t^{-1}\right) + c

= -e^{-2t}\ln t - e^{-2t} + c

A solução geral será:

y(t) = k_1e^{-2t} + k_2te^{-2t} -e^{-2t}\ln t - e^{-2t}

y(t) = (k_1-1)e^{-2t} + k_2te^{-2t} - e^{-2t}\ln t

Chamando k_1 - 1 de c_1 e k_2 de c_2, temos que:

y(t) = c_1e^{-2t} + c_2te^{-2t} - e^{-2t}\ln t

Note que o livro exibe a resposta dessa maneira. Isso não significa dizer que foi considerado Y(t) = -e^{-2t}\ln |t| como você disse.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Equação diferencial] Resposta não bate com o livro

Mensagempor Bruno G Carneiro » Ter Mai 15, 2012 18:18

Grato!

Identifiquei onde está o meu erro!
Bruno G Carneiro
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Mai 11, 2012 15:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?