• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada do Quociente

Derivada do Quociente

Mensagempor dekol2 » Dom Mai 06, 2012 20:39

Olá! estou com uma certa dificuldade para derivar uma função, se alguém poder me ajudar agradeço

f(x)=

Imagem
dekol2
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mai 06, 2012 20:26
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Derivada do Quociente

Mensagempor Claudin » Dom Mai 06, 2012 21:41

Basta seguir as regras de derivação

assim temos que:

\frac{f(x)}{g(x)}= \frac{f\prime(x)g(x)-f(x)g\prime(x)}{[g(x)]^2}
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Derivada do Quociente

Mensagempor dekol2 » Seg Mai 07, 2012 01:07

Conheço a regra do quociente, mas se fosse possível gostaria de ver o desenvolvimento do problema para tirar uma duvida, pois em uma vídeo aula o professor pôs o resultado da derivada direta e não desenvolveu, e estou tendo dificuldades para desenvolve-la.
dekol2
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mai 06, 2012 20:26
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Derivada do Quociente

Mensagempor DanielFerreira » Seg Mai 07, 2012 02:21

f(x) = \frac{x^2 - 4}{(x^2 + 4)^2}


f'(x) = \frac{2x.(x^2 + 4)^2 - (x^2 - 4).2.(x^2 + 4)^1.2x}{[(x^2 + 4)^2]^2}


f'(x) = \frac{2x(x^2 + 4)[(x^2 + 4) - 2(x^2 - 4)]}{(x^2 + 4)^4}


f'(x) = \frac{2x[(x^2 + 4) - 2(x^2 - 4)]}{(x^2 + 4)^3}


f'(x) = \frac{2x[x^2 + 4 - 2x^2 + 8]}{(x^2 + 4)^3}


f'(x) = \frac{2x[- x^2 + 12]}{(x^2 + 4)^3}


f'(x) = - \frac{2x(x^2 - 12)}{(x^2 + 4)^3}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1683
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Derivada do Quociente

Mensagempor LuizAquino » Seg Mai 07, 2012 11:34

dekol2 escreveu:Olá! estou com uma certa dificuldade para derivar uma função, se alguém poder me ajudar agradeço

f(x)=
figura.png
figura.png (4.96 KiB) Exibido 1636 vezes



Por favor, procure usar o LaTeX para inserir em sua mensagem as notações desejadas. Vide o tópico:

DICA: Escrevendo Fórmulas com LaTeX via BBCode
viewtopic.php?f=9&t=74

Inclusive, o uso do LaTeX para escrever as notações faz parte das Regras deste Fórum (regra 2).

dekol2 escreveu:Conheço a regra do quociente, mas se fosse possível gostaria de ver o desenvolvimento do problema para tirar uma duvida, pois em uma vídeo aula o professor pôs o resultado da derivada direta e não desenvolveu, e estou tendo dificuldades para desenvolve-la.


Apenas para referência, a derivada dessa função aparece na videoaula "21. Cálculo I - Teste da Primeira e da Segunda Derivada". Ela está disponível em meu canal no YouTube:

http://www.youtube.com/LCMAquino
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D