por Thiago_Andre_Carniel » Seg Abr 30, 2012 21:58
Sendo os vetores:


onde
v e
e são vetores e
A é uma matriz.
O produto vetorial entre e
f1 e
f2 é

e a derivada direcional de
f em relação a
v, na direção de
w é,

Deste modo, minha dúvida é a seguinte:
É possível obter somente a derivada de
f em relação a
v através do conceito da derivada direcional ?
-
Thiago_Andre_Carniel
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Abr 30, 2012 21:19
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Produto escalar, Produto Vetorial e Produto Misto
por fernando7 » Qua Mai 23, 2018 17:29
- 0 Respostas
- 4949 Exibições
- Última mensagem por fernando7

Qua Mai 23, 2018 17:29
Geometria Analítica
-
- Derivada direcional
por barbara-rabello » Seg Out 15, 2012 20:40
- 9 Respostas
- 5714 Exibições
- Última mensagem por barbara-rabello

Qui Out 18, 2012 12:03
Cálculo: Limites, Derivadas e Integrais
-
- Derivada Direcional
por bruuno » Seg Nov 25, 2013 16:45
- 1 Respostas
- 1810 Exibições
- Última mensagem por Bravim

Ter Nov 26, 2013 03:20
Cálculo: Limites, Derivadas e Integrais
-
- Derivada Direcional
por Renan1434 » Ter Dez 16, 2014 16:00
- 1 Respostas
- 1661 Exibições
- Última mensagem por adauto martins

Qua Dez 17, 2014 15:39
Cálculo: Limites, Derivadas e Integrais
-
- Derivada direcional
por Jadiel Carlos » Seg Nov 21, 2016 11:14
- 2 Respostas
- 5880 Exibições
- Última mensagem por Jadiel Carlos

Qui Nov 24, 2016 01:16
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Exercicios de polinomios
Autor:
shaft - Qua Jun 30, 2010 17:30
Então, o exercicio pede para encontrar

.
Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !
Assunto:
Exercicios de polinomios
Autor:
Douglasm - Qua Jun 30, 2010 17:53
Bom, se desenvolvermos isso, encontramos:
Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):
Somando a primeira e a segunda equação:
Finalmente:
Até a próxima.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.