• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda na resolução de limite

Ajuda na resolução de limite

Mensagempor harreb » Qui Mar 22, 2012 06:42

Estou com dificuldade de resolver o limite abaixo:

Calcule, usando a definição

f'({x}_{0}) = \lim_{x\rightarrow0} \frac{f(x) - f({x}_{0})}{x - {x}_{0}}

a derivada

f'(1), se f(x) = \frac{1}{x}
harreb
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mar 22, 2012 06:20
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Eletrônica
Andamento: formado

Re: Ajuda na resolução de limite

Mensagempor joaofonseca » Qui Mar 22, 2012 11:09

Antes de mais a expressão que apresentas traduz a definição de derivada num dado ponto. Neste caso x=0.

É verdade que quando se tenta comutar a expressão com os devidos valores, nos deparamos com a situação de \frac{1}{0}.
Rapidamente paramos para pensar e reconhecemos uma daquelas funções elementares de cujo gráfico todos devemos de memorizar. Neste caso temos f(x)=\frac{1}{x}.
Através de um simulador gráfico podemos vizualizar que esta função é continua em todos os pontos exeto em x=0. Logo se não é continua, não é diferenciavel. Não é continua porque os limites laterais quando x \to 0 não são iguais.
Para ser diferenciavel é necessário que seja continua e que o declive da reta tangente(derivada) seja igual, quer x \to 0 pela esquerda, quer x \to 0 pela direita.
Logo concluímos que está função não tem derivada em x=0.

Pela definição de derivada:

f(x)'=\lim_{h \to 0}\frac{f(x+h)-f(x)}{h}

Obtemos:

f(x)'=-\frac{1}{x^2} cujo o dominio é R\{0}.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Ajuda na resolução de limite: ok

Mensagempor harreb » Sex Mar 23, 2012 06:43

Obrigado pela ajuda
harreb
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mar 22, 2012 06:20
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Eletrônica
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?