por mario237 » Dom Fev 19, 2012 17:45
sendo p um numero primo.Quantos dividores p2 possui? (Justifique a resposta.). Respondi:Possui 3 divisores, pois se considerarmos, por exemplo: p² = 2² achamos o total de divisores através de (k1 + 1) onde k1 = 2 (2 o expoente), assim (2 + 1) = 3 divisores.
Numa decomposição de 4 por exemplo: 4 = 2²
Divisores de 4 são {1, 2, 4}, portanto 3 divisores. Porem tenho duvida,porque o produto de dois números primos resulta em um numero composto, e se tivermos no conjunto dos inteiros pode existir outros divisores (1-,-2,-4)???me ajudem
-
mario237
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Fev 19, 2012 11:52
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura matematica
- Andamento: cursando
por fraol » Dom Fev 19, 2012 23:14
Usando o número 4 do seu exemplo, embora ele não seja primo, penso que você raciocinou assim:

então você pegou o expoente do fator primo e somou 1, assim obteve 3 divisores. Certo?
Esse raciocínio está correto e pode ser estendido para os casos com mais de um fator primo, por exemplo:

assim a quantidade de divisores é

.
Voltando aos números primos. No caso de um número primo

elevado ao quadrado teremos

que é a própria representação em fatores primos. Então a quantidade de divisores será

divisores.
Isso ajuda?
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por mario237 » Seg Fev 20, 2012 14:54
Obrigado, agora entendi, quando vc fala que (P) elevado ao quadrado é a propria representação em fatores primos ficou bem claro saber quantos divisores p2 possui.
-
mario237
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Fev 19, 2012 11:52
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura matematica
- Andamento: cursando
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Teoria Números] Algoritmo Não Interceptação Números Primos
por WillamesSilva » Qua Out 26, 2016 12:21
- 8 Respostas
- 16838 Exibições
- Última mensagem por WillamesSilva

Ter Nov 22, 2016 15:33
Aritmética
-
- Números primos
por mony0771 » Qui Abr 23, 2009 10:54
- 2 Respostas
- 3999 Exibições
- Última mensagem por mony0771

Qui Abr 23, 2009 15:28
Álgebra Elementar
-
- Numeros Primos
por Neperiano » Sex Abr 24, 2009 20:15
- 6 Respostas
- 5559 Exibições
- Última mensagem por Neperiano

Sáb Abr 25, 2009 10:23
Problemas do Cotidiano
-
- Números Primos
por Abelardo » Qua Mar 09, 2011 21:38
- 1 Respostas
- 2954 Exibições
- Última mensagem por Abelardo

Qua Mar 09, 2011 21:41
Álgebra Elementar
-
- OBM - Números primos
por Abelardo » Sáb Mar 12, 2011 16:54
- 4 Respostas
- 4501 Exibições
- Última mensagem por Abelardo

Dom Mar 13, 2011 13:26
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.