por MarciaZardo » Sáb Jan 21, 2012 17:46
Boa tarde!
Poderiam me ajudar a resolver essa questão?
Os preços em reais (R$) para uma amostra de equipamentos de som estãoindicados na tabela abaixo.
Equipamento. 1 2 3 4 5 6 7
Preço (R$) 500 834 470 480 420 440 440
Com base na amostra, a volar CORRETO da mediana é igual a:
a) R$ 440,00
b) R$ 470,00
c) R$ 512,00
d) R$ 627,00
Obrigada,
Marcia.
-
MarciaZardo
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Jan 21, 2012 17:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Contabilidade
- Andamento: formado
por Cleyson007 » Sáb Jan 21, 2012 18:05
Boa tarde!
Primeiro ordene os elementos em ordem crescente:
420 440 440 470 480 500 834
A mediana será o elemento central.
Alternativa b.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por MarciaZardo » Dom Jan 22, 2012 20:24
Só isso... Fiquei até com vergonha...

Obrigada!
-
MarciaZardo
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Jan 21, 2012 17:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Contabilidade
- Andamento: formado
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- mediana
por alfabeta » Seg Mar 05, 2012 11:45
- 5 Respostas
- 3218 Exibições
- Última mensagem por LuizAquino

Seg Mar 05, 2012 22:45
Geometria Plana
-
- Mediana
por Pri Ferreira » Seg Abr 09, 2012 16:17
- 1 Respostas
- 1470 Exibições
- Última mensagem por LuizAquino

Ter Abr 10, 2012 20:55
Estatística
-
- Mediana e a Moda
por Walquiria » Dom Dez 18, 2011 12:14
- 0 Respostas
- 857 Exibições
- Última mensagem por Walquiria

Dom Dez 18, 2011 12:14
Estatística
-
- Mediana de classes
por ah001334 » Ter Mar 06, 2012 08:54
- 0 Respostas
- 1149 Exibições
- Última mensagem por ah001334

Ter Mar 06, 2012 08:54
Estatística
-
- Mediana de um triângulo
por iclilima » Seg Jul 02, 2012 11:57
- 1 Respostas
- 1334 Exibições
- Última mensagem por Renato_RJ

Seg Jul 02, 2012 14:56
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.