• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Trigonometria

Trigonometria

Mensagempor Francisco Vieira » Dom Dez 04, 2011 15:12

Quantas soluções a equação trigonométrica sen^6(x) + cos^6(x) = 1 admite no intervalo [0, 100]?
A) 64
B) 60
C) 56
D) 52
E) 48

Questão 21 da prova da Uespi 2011.
Francisco Vieira
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Dez 03, 2011 19:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura Plena em Matemática
Andamento: formado

Re: Trigonometria

Mensagempor eds_eng » Seg Dez 05, 2011 18:41

resolvendo essa equação, teremos:

(senx)^6 + [(cosx)^2]^3 = 1

pela relação fundamental da trigonometria:

(senx)^2+ (cosx)^2 = 1

assim, isolando (cosx)^2 e substituindo na equação original, teremos:

(senx)^6 + [1-(senx)^2]^3 = 1

desenvolvendo o binômio na equação:

(senx)^6 + 1 + 3*1*[(senx)^2]^2 - 3*1^2*(senx)^2 - (senx)^6 = 1

assim, vamos ficar com a seguinte estrutura:

3*(senx)^4 - 3*(senx)^2 = 0

(senx)^4 - (senx)^2 = 0

resolvendo:

(senx)^2*[ (senx)^2 - 1 ]= 0

assim, (senx)^2 = 0 ou (senx)^2 - 1  = 0

logo, concluímos que:

senx = 0
senx = 1
senx = -1

sabe-se que x \in [ 0 ; 100 ]

OBS: o valor 100 está em radianos.

2\pi rad \approx 6,18 rad

assim temos que 16 voltas completas no círculo trigonométrico garante um ângulo de, aproximadamente 99 rad.

agora vamos analisar cada valor do senx:

caso 1 : senx = 0

em uma volta completa, temos que senx = 0 implica em dois pontos : 0 e 2\pi

logo, em 16 voltas teremos 2*16=32 pontos que satisfazem essa condição

caso 2 : senx = 1

em uma volta completa, temos que senx = 1 implica em apenas um ponto : \frac{\pi}{2}

logo, em 16 voltas, teremos 16 pontos que satisfazem essa condição

caso 3 : senx = -1

em uma volta completa, temos que senx = -1 implica em apenas um ponto :\frac{3\pi}{2}

logo, em 16 voltas completas, teremos 16 pontos que satisfazem essa condição

assim, o números de soluções da equação é 32 +16 + 16 = 64 soluções

LETRA A
eds_eng
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Dez 04, 2011 09:34
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}