• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[derivada implícita]exercício

[derivada implícita]exercício

Mensagempor luiz_henriquear » Seg Out 24, 2011 20:48

Estou começando agora a entender derivada implícita, mas não consigo encontrar a resposta para o seguinte exercício de derivada implícita:
{y}^{3}=\frac{x-y}{x+y}


Ps.A dificuldade é quando vamos fazer a regra do quociente e temos que utilizar nos Ys a regra da cadeia

Att.
luiz_henriquear
luiz_henriquear
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Seg Out 24, 2011 20:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: engenharia civil
Andamento: cursando

Re: [derivada implícita]exercício

Mensagempor LuizAquino » Seg Out 24, 2011 21:58

luiz_henriquear escreveu:encontrar a resposta para o seguinte exercício de derivada implícita:
{y}^{3}=\frac{x-y}{x+y}


\left({y}^{3}\right)^\prime=\left(\frac{x-y}{x+y}\right)^\prime

3y^2y^\prime = \frac{(x-y)^\prime(x+y) - (x-y)(x+y)^\prime}{(x+y)^2}

3y^2y^\prime = \frac{(1 - y^\prime)(x+y) - (x-y)(1+y^\prime)}{(x+y)^2}

3y^2y^\prime = \frac{-2xy^\prime + 2y }{(x+y)^2}

3y^2y^\prime(x+y)^2 = -2xy^\prime + 2y

\left[3y^2(x+y)^2 + 2x\right]y^\prime = 2y

y^\prime = \frac{2y}{3y^2(x+y)^2 + 2x}

Observação
Se você desejar revisar o conceito de derivada implícita, então eu gostaria de recomendar a vídeo-aula "14. Cálculo I - Derivada de Função Implícita". Ela está disponível em meu canal no YouTube:

http://www.youtube.com/LCMAquino
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [derivada implícita]exercício

Mensagempor luiz_henriquear » Seg Out 24, 2011 22:24

Obrigado Luiz pela ajuda, mas há um porém:
as alternativas são:
a)y'=\frac{x-y}{3xy^2+3y^3}

b)y'=\frac{1-y^3}{3xy^2+4y^3+1}[tex]

c)[tex]y'=\frac{1-y}{1+y}

d)y'=\frac{1}{3xy^2+4y^3}

e)y'=\frac{1}{3y^2}
luiz_henriquear
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Seg Out 24, 2011 20:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: engenharia civil
Andamento: cursando

Re: [derivada implícita]exercício

Mensagempor luiz_henriquear » Ter Out 25, 2011 12:21

Muito obrigado
luiz_henriquear
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Seg Out 24, 2011 20:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: engenharia civil
Andamento: cursando

Re: [derivada implícita]exercício

Mensagempor luiz_henriquear » Ter Nov 01, 2011 20:50

Caro Luiz
Se eu passar o divisor para o outro lado e derivar implicitamente chegare na alternativa b
luiz_henriquear
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Seg Out 24, 2011 20:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: engenharia civil
Andamento: cursando

Re: [derivada implícita]exercício

Mensagempor LuizAquino » Ter Nov 01, 2011 23:04

luiz_henriquear escreveu:Caro Luiz,
Se eu passar o divisor para o outro lado e derivar implicitamente chegarei na alternativa b


Ok.

y^3 = \frac{x-y}{x+y}

y^3(x+y) = x-y

3y^2y^\prime(x+y) + y^3(1+y^\prime)= 1 - y^\prime

\left[3y^2(x+y)  + y^3  + 1\right]y^\prime = 1 - y^3

y^\prime = \frac{1 - y^3}{3y^2x+ 4y^3  + 1}

Observação

Considere que y = k (com k não nulo). Da equação y^3 = \frac{x-y}{x+y}, obtemos que x = \frac{k^4 + k}{1 - k^3} .

Agora substitua o ponto \left(\frac{k^4 + k}{1-k^3},\,k\right) nas expressões y^\prime = \frac{1 - y^3}{3y^2x+ 4y^3  + 1} e y^\prime = \frac{2y}{3y^2(x+y)^2 + 2x} . Você verificará que o resultado para y^\prime será o mesmo em ambas.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 16 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59