• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[derivada implícita]exercício

[derivada implícita]exercício

Mensagempor luiz_henriquear » Seg Out 24, 2011 20:48

Estou começando agora a entender derivada implícita, mas não consigo encontrar a resposta para o seguinte exercício de derivada implícita:
{y}^{3}=\frac{x-y}{x+y}


Ps.A dificuldade é quando vamos fazer a regra do quociente e temos que utilizar nos Ys a regra da cadeia

Att.
luiz_henriquear
luiz_henriquear
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Seg Out 24, 2011 20:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: engenharia civil
Andamento: cursando

Re: [derivada implícita]exercício

Mensagempor LuizAquino » Seg Out 24, 2011 21:58

luiz_henriquear escreveu:encontrar a resposta para o seguinte exercício de derivada implícita:
{y}^{3}=\frac{x-y}{x+y}


\left({y}^{3}\right)^\prime=\left(\frac{x-y}{x+y}\right)^\prime

3y^2y^\prime = \frac{(x-y)^\prime(x+y) - (x-y)(x+y)^\prime}{(x+y)^2}

3y^2y^\prime = \frac{(1 - y^\prime)(x+y) - (x-y)(1+y^\prime)}{(x+y)^2}

3y^2y^\prime = \frac{-2xy^\prime + 2y }{(x+y)^2}

3y^2y^\prime(x+y)^2 = -2xy^\prime + 2y

\left[3y^2(x+y)^2 + 2x\right]y^\prime = 2y

y^\prime = \frac{2y}{3y^2(x+y)^2 + 2x}

Observação
Se você desejar revisar o conceito de derivada implícita, então eu gostaria de recomendar a vídeo-aula "14. Cálculo I - Derivada de Função Implícita". Ela está disponível em meu canal no YouTube:

http://www.youtube.com/LCMAquino
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [derivada implícita]exercício

Mensagempor luiz_henriquear » Seg Out 24, 2011 22:24

Obrigado Luiz pela ajuda, mas há um porém:
as alternativas são:
a)y'=\frac{x-y}{3xy^2+3y^3}

b)y'=\frac{1-y^3}{3xy^2+4y^3+1}[tex]

c)[tex]y'=\frac{1-y}{1+y}

d)y'=\frac{1}{3xy^2+4y^3}

e)y'=\frac{1}{3y^2}
luiz_henriquear
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Seg Out 24, 2011 20:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: engenharia civil
Andamento: cursando

Re: [derivada implícita]exercício

Mensagempor luiz_henriquear » Ter Out 25, 2011 12:21

Muito obrigado
luiz_henriquear
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Seg Out 24, 2011 20:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: engenharia civil
Andamento: cursando

Re: [derivada implícita]exercício

Mensagempor luiz_henriquear » Ter Nov 01, 2011 20:50

Caro Luiz
Se eu passar o divisor para o outro lado e derivar implicitamente chegare na alternativa b
luiz_henriquear
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Seg Out 24, 2011 20:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: engenharia civil
Andamento: cursando

Re: [derivada implícita]exercício

Mensagempor LuizAquino » Ter Nov 01, 2011 23:04

luiz_henriquear escreveu:Caro Luiz,
Se eu passar o divisor para o outro lado e derivar implicitamente chegarei na alternativa b


Ok.

y^3 = \frac{x-y}{x+y}

y^3(x+y) = x-y

3y^2y^\prime(x+y) + y^3(1+y^\prime)= 1 - y^\prime

\left[3y^2(x+y)  + y^3  + 1\right]y^\prime = 1 - y^3

y^\prime = \frac{1 - y^3}{3y^2x+ 4y^3  + 1}

Observação

Considere que y = k (com k não nulo). Da equação y^3 = \frac{x-y}{x+y}, obtemos que x = \frac{k^4 + k}{1 - k^3} .

Agora substitua o ponto \left(\frac{k^4 + k}{1-k^3},\,k\right) nas expressões y^\prime = \frac{1 - y^3}{3y^2x+ 4y^3  + 1} e y^\prime = \frac{2y}{3y^2(x+y)^2 + 2x} . Você verificará que o resultado para y^\prime será o mesmo em ambas.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}