• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Domínio (campo maximal) função

Domínio (campo maximal) função

Mensagempor Fabio010 » Sáb Out 22, 2011 13:40

Já estou à 1 meia hora e tentar resolver o domínio desta função.

f(x) = log \frac{x^3-3x+2}{x+1}

Eu tentei assim.

x^3-3x+2 pela regra do ruffini fica (x-1)(x^2+x-2)

logo x>1~\cap~~x<-2~~\cap~~x>1

como sabemos (x+1) tem de ser maior que zero, logo x>-1
x tem de ser diferente de 1.

Dominio = x<-2~~~]-1,1[~~~~  ]1, +\infty[


Nas soluções a minha solução está errada.
Soluções = -1<x<1 , 2<x<+\infty
Fabio010
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Out 21, 2011 20:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Domínio (campo maximal) função

Mensagempor MarceloFantini » Sáb Out 22, 2011 15:41

Temos que x^3 -3x +2 = (x-1)(x^2 +x -2) = (x-1)(x-1)(x+2) = (x-1)^2(x-2). Agora, precisamos que \frac{x^3 -3x+2}{x+1} > 0, logo \frac{(x-1)^2(x+2)}{x+1} > 0. Podemos concluir que x \neq 1, x \neq -2 e x \neq -1. Portanto, para analisar o sinal disto basta avaliar o sinal de \frac{x+2}{x+1}. Isso acontece quando x < -2 e quando x>-1. A resposta será (- \infty, -2) \cup (-1, 1) \cup (1, \infty).

Eu discordo da solução do gabarito pois se tomar x=\frac{3}{2} terá f(\frac{3}{2}) = \log \frac{\frac{7}{8}}{\frac{5}{2}} que é solução mas não está no conjunto.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Domínio (campo maximal) função

Mensagempor Fabio010 » Sáb Out 22, 2011 18:25

Pois então eu resolvi o problema de forma correcta.
É que as soluções do livro ( B. Demidovitch) estão incorrectas.

Obrigado pela ajuda!!
Fabio010
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Out 21, 2011 20:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?