• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limetes trigonometrico] ajuda urgente

[Limetes trigonometrico] ajuda urgente

Mensagempor Rafael eDomus » Qui Set 29, 2011 15:17

\lim_{x\rightarrow0}\frac{sen4x}{sen3x}

\lim_{x\rightarrow0}\frac{tg3x}{tg5x}

não consegui sair do lugar
Rafael eDomus
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Set 29, 2011 13:33
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Limetes trigonometrico] ajuda urgente

Mensagempor LuizAquino » Sex Set 30, 2011 17:05

Rafael eDomus escreveu:\lim_{x\to 0}\frac{\textrm{sen}\,4x}{\textrm{sen}\,3x}


A ideia básica é fazer a aparecer o limite trigonométrico fundamental. Para isso, dividindo tanto o numerador quanto o denominador por 12x, note que podemos reescrever esse limite como:

\lim_{x\to 0}\frac{\textrm{sen}\,4x}{\textrm{sen}\,3x} = \lim_{x\to 0}\frac{\frac{\textrm{sen}\,4x}{12x}}{\frac{\textrm{sen}\,3x}{12x}}

= \frac{4}{3}\lim_{x\to 0}\frac{\frac{\textrm{sen}\,4x}{4x}}{\frac{\textrm{sen}\,3x}{3x}}

= \frac{4}{3}\frac{\lim_{x\to 0} \frac{\textrm{sen}\,4x}{4x}}{\lim_{x\to 0} \frac{\textrm{sen}\,3x}{3x}}

Agora use as substituições u = 4x e v = 3x. Em ambas as substituições, se x\to 0, então u\to 0 e v\to 0. Com isso, podemos escrever que:

= \frac{4}{3}\frac{\lim_{u\to 0} \frac{\textrm{sen}\,u}{u}}{\lim_{v\to 0} \frac{\textrm{sen}\,v}{v}}

= \frac{4}{3}\cdot \frac{1}{1}

= \frac{4}{3}

Rafael eDomus escreveu:\lim_{x\to 0}\frac{\textrm{tg}\, 3x}{\textrm{tg}\, 5x}


Aplicando a definição de tangente, esse limite é o mesmo que:

\lim_{x\to 0}\frac{\textrm{tg}\, 3x}{\textrm{tg}\, 5x} = \lim_{x\to 0}\frac{\frac{\textrm{sen}\, 3x}{\cos 3x}}{\frac{\textrm{sen}\, 5x}{\cos 5x}}

= \lim_{x\to 0} \frac{\textrm{sen}\, 3x}{\textrm{sen}\, 5x} \cdot \frac{\cos 5x}{\cos 3x}

= \left(\lim_{x\to 0} \frac{\textrm{sen}\, 3x}{\textrm{sen}\, 5x}\right) \cdot \left(\lim_{x\to 0} \frac{\cos 5x}{\cos 3x}\right)

Para resolver o primeiro limite, basta aplicar uma ideia semelhante a que usamos no cálculo do limite anterior. Quanto ao segundo limite, é fácil resolver já que não temos indeterminação.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: