Considere 25 pontos em um plano de forma que para cada 3 pontos quaisquer, dentre os 25, pelo menos um par deles possui distância menor que 1 cm. Mostre que existe um círculo de raio 1 cm que contém pelo menos 13 dos 25 pontos.
Cheguei a estas conclusões e gostaria de saber se estão corretas.
I) Se para cada 3 pontos, TODOS distam menos de 1 cm entre si, tomando um desses pontos como centro de um círculo de raio 1 cm. Logo, todos os pontos pertencem a este círculo.
II) Existe um trio de pontos A, B, C tal que dois deles, digamos, A e B, tal que d(A,B) > 1.
Considere dois círculos, C(A) e C(B), cujos centros são A e B respectivamente.
Para cada ponto X diferente de A e B, X pertence a C(A) ou C(B).
23 pontos possíveis para X, dois círculos, casa dos pombos, resultando em no mínimo 13 pontos em um círculo (não esqueça do centro do círculo).