• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Radiciação] Raízes dentro de raízes

[Radiciação] Raízes dentro de raízes

Mensagempor mottasky » Ter Set 13, 2011 22:00

Galera, estou tentando resolver está Racionalização, mas estou meio perdido, se alguém puder me ajudar, a resposta eu sei gostaria de saber como resolver!

Sendo \; A=\sqrt[3]{10-\sqrt[3]{6+\sqrt[3]{8}}} }\;e \; B= \sqrt[]{7 +\sqrt[]{7 - \sqrt[]{9}}}\,,calcule \,o \, valor \, de \; \sqrt[]{{A}^{4} + {B}^{2}}

Obs: o resultado tem que dar: 5

Obrigado pessoal!
mottasky
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Set 13, 2011 21:20
Formação Escolar: ENSINO MÉDIO
Área/Curso: Informatica
Andamento: formado

Re: [Radiciação] Raízes dentro de raízes

Mensagempor MarceloFantini » Ter Set 13, 2011 22:14

Use que 8 = 2^3 e 9 = 3^2, isto cancelará as primeiras raízes. Daí tente enxergar o resto.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Radiciação] Raízes dentro de raízes

Mensagempor mottasky » Qui Set 15, 2011 15:52

MarceloFantini escreveu:Use que 8 = 2^3 e 9 = 3^2, isto cancelará as primeiras raízes. Daí tente enxergar o resto.


KKKKk

Muito obrigado, não acredito que não vi isso, a partir dai fica facil, é só ir cancelando muito obrigado!
mottasky
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Set 13, 2011 21:20
Formação Escolar: ENSINO MÉDIO
Área/Curso: Informatica
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}