por Ice » Dom Jul 24, 2011 18:06
Olá.
É a minha primeira dúvida por aqui mas esta está complicada para mim.
Estou a efectuar o estudo da seguinte função:

Já consegui calcular:
- o dominio como

\{0}
- uma assimptota vertical em

- a derivada de

e os respectivos zeros/raizes
- os limites

,

,

e

No entanto agora estou com problemas em calcular os zeros/raizes de

.
Intuitivamente sei que existe um zero e já confirmei traçando o gráfico mas ao fazer as contas não estou a conseguir isolar o

depois de chegar ao seguinte estado:

Obrigado pela atenção.
-
Ice
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Jul 24, 2011 17:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Informáica
- Andamento: cursando
por LuizAquino » Dom Jul 24, 2011 21:02
Ice escreveu:Intuitivamente sei que existe um zero e já confirmei traçando o gráfico mas ao fazer as contas não estou a conseguir isolar o x depois de chegar ao seguinte estado:

Esse tipo de equação é chamada de transcendental. Não há uma forma analítica de resolvê-la. Para solucioná-la é necessário usar alguma técnica numérica, como por exemplo o
Método de Newton.
Vale lembrar que no estudo da função pode ser suficiente apenas identificar aproximadamente onde está a raiz, sem necessariamente calculá-la exatamente.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Ice » Dom Jul 24, 2011 21:14
Obrigado pela resposta!
Sendo assim, o melhor que devo conseguir é utilizar a intuição e o Teorema de Bolzano-Cauchy para provar que existe uma raiz num determinado intervalo.
-
Ice
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Jul 24, 2011 17:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Informáica
- Andamento: cursando
por LuizAquino » Dom Jul 24, 2011 21:30
Ice escreveu:Sendo assim, o melhor que devo conseguir é utilizar a intuição e o Teorema de Bolzano-Cauchy para provar que existe uma raiz num determinado intervalo.
Sim.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Logaritmos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Estudo da função
por Harzeus » Seg Jan 10, 2011 13:58
- 1 Respostas
- 1093 Exibições
- Última mensagem por Neperiano

Qui Out 27, 2011 15:27
Funções
-
- Função ( Estudo do sinal )
por clara » Dom Jun 21, 2009 20:55
- 1 Respostas
- 5224 Exibições
- Última mensagem por Molina

Seg Jun 22, 2009 12:57
Funções
-
- Estudo da [continuidade] de uma função
por Teh_eng » Qui Mai 03, 2012 13:43
- 1 Respostas
- 1281 Exibições
- Última mensagem por Russman

Qui Mai 03, 2012 14:52
Cálculo: Limites, Derivadas e Integrais
-
- Estudo de uma parabola de uma função do 2º grau
por gomusalie » Qui Out 27, 2011 15:53
- 1 Respostas
- 2351 Exibições
- Última mensagem por angieluis

Qui Out 27, 2011 19:14
Funções
-
- [Estudo de sinal dessa função]
por wilsonfilho0 » Ter Jun 14, 2016 17:06
- 1 Respostas
- 2338 Exibições
- Última mensagem por vitor_jo

Dom Jul 10, 2016 04:53
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.