• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistemas lineares

Sistemas lineares

Mensagempor Philipp » Dom Jun 05, 2011 12:40

Bom dia! Queria-lhes perguntar se poderiam me ajudar no exercício de matemátic? Não tenho tanta pressa, mas de preferência, gostaria de que me respondessem o mais rápido possível. Obrigado.

"Uma nutricionista vai preparar um suco a partir de três espécies de alimento: laranja, couve e gengibre. Ao pesquisar, obeve o seguinte resultado para a composição de cada um deles, em função de três componentes nutricionais, A, B, e C:

(É uma tabela) A.....B.....C
Laranja.........1.....3.....4
Couve...........2.....3.....5
Gengibre.......3.....0.....3

Sabendo que para a elaboração de 1 copo de suco ela quer obter 11 unidades de A, 9 unidades de B e 20 unidades de C, e que 1 laranja custa R$ 0,60, 1 folha de couve, R$ 0,10 e 1 ramo de gengibre, R$ 0,10, calcule:
a) a quantidade de laranjas, folhas de couve e ramos de gengibre (tomados necessariamente inteiros) necessária para a elaboração de 1 copo de suco;
b) o custo de cada copo de suco."

Estou quebrando a cabeça. Entendi que a primeira equação é x + y + z = 1, e que a terceira começa com 0,6x + 0,1y + 0,1z, mas sem o termo independente. Eu não quero o resultado e sim entender a fazer esse tipo de problema. Obrigado!
Philipp
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Jun 05, 2011 11:38
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Sistemas lineares

Mensagempor DanielFerreira » Seg Jun 06, 2011 19:13

Philipp escreveu:Bom dia! Queria-lhes perguntar se poderiam me ajudar no exercício de matemátic? Não tenho tanta pressa, mas de preferência, gostaria de que me respondessem o mais rápido possível. Obrigado.

"Uma nutricionista vai preparar um suco a partir de três espécies de alimento: laranja, couve e gengibre. Ao pesquisar, obeve o seguinte resultado para a composição de cada um deles, em função de três componentes nutricionais, A, B, e C:

(É uma tabela) A.....B.....C
Laranja.........1.....3.....4
Couve...........2.....3.....5
Gengibre.......3.....0.....3

Sabendo que para a elaboração de 1 copo de suco ela quer obter 11 unidades de A, 9 unidades de B e 20 unidades de C, e que 1 laranja custa R$ 0,60, 1 folha de couve, R$ 0,10 e 1 ramo de gengibre, R$ 0,10, calcule:
a) a quantidade de laranjas, folhas de couve e ramos de gengibre (tomados necessariamente inteiros) necessária para a elaboração de 1 copo de suco;
b) o custo de cada copo de suco."

Estou quebrando a cabeça. Entendi que a primeira equação é x + y + z = 1, e que a terceira começa com 0,6x + 0,1y + 0,1z, mas sem o termo independente. Eu não quero o resultado e sim entender a fazer esse tipo de problema. Obrigado!

Philipp,
Componente A:
1La + 2Co + 3Ge = 11

Componente B:
3La + 3Co + 0Ge = 9

Componente C:
4La + 5Co + 3Ge = 20

então,
x + 2y + 3z = 11
3x + 3y = 9
4x + 5y + 3z = 20

Quanto aos preços, substitui quando encontrar x, y e z
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.