• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Arquimedes

Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

Arquimedes

Mensagempor Neperiano » Sex Out 31, 2008 20:48

Arquimedes (em grego Αρχιμιδις) foi um matemático, físico e inventor grego. Foi um dos mais importantes cientistas e matemáticos da Antiguidade e um dos maiores de todos os tempos. Ele fez descobertas importantes em geometria e matemática, como por exemplo um método para calcular o número π (razão entre o perímetro de uma circunferência e seu diâmetro) utilizando séries. Este resultado constitui também o primeiro caso conhecido do cálculo da soma de uma série infinita. Ele inventou ainda vários tipos de máquinas, quer para uso militar, quer para uso civil. No campo da Física, ele contribuiu para a fundação da Hidrostática, tendo feito, entre outras descobertas, o famoso princípio que leva o seu nome. Ele descobriu ainda o príncipio da alavanca e a ele é atribuída a citação: "Dêem-me uma alavanca e um ponto de apoio e eu moverei o mundo".

Imagem

Biografia:

A maioria dos detalhes da vida de Arquimedes são desconhecidos. Sabe-se que nasceu em Siracusa, na época uma cidade-estado da Magna Grécia cerca de 287 a.C. Seu pai foi um astrônomo chamado Fídias, do qual nada se conhece. Quando jovem, estudou em Alexandria, o centro do saber da época, com Cônon, um dos discípulos de Euclides. Embora na Antiguidade não houvesse clara distinção entre matemáticos (geómetras), físicos (cientistas naturais) e filósofos, Arquimedes destacou-se ao longo da sua vida principalmente como inventor e matemático.

Hidrostática:

Em Física, no seu "Tratado dos Corpos Flutuantes", estabeleceu as leis fundamentais da Estática e da Hidrostática. Um dos princípios fundamentais da hidrostática é assim enunciado: "Todo corpo mergulhado total ou parcialmente em um fluido sofre uma impulsão vertical, dirigido de baixo para cima, igual ao peso do volume do fluido deslocado, e aplicado no centro de impulsão."

O centro do impulsão é o centro de gravidade do volume que corresponde à porção submersa do corpo. Isto quer dizer que, para o objecto flutuar, o peso da água deslocada pelo objecto tem de ser maior que o próprio peso do objecto.

Criações matemáticas:

- No tratado "Sobre as Medidas do Círculo", Arquimedes, em um círculo dado, inscreveu e circunscreveu um polígono de 96 lados e obteve a fórmula para o cálculo da área do círculo e, por muitos séculos, o mais acertado valor para π;

- No tratado "A Quadratura da Parábola", Arquimedes demonstrou que a área contida por uma parábola (Sp) e uma reta transversal é 4 / 3 da área do triângulo (St) com a mesma base e cujo vértice é o ponto onde a tangente à parábola é paralela à base;

- O tratado sobre espirais descreveu a curva hoje conhecida como Espiral de Arquimedes (em coordenadas polares tem equação r = a + bθ) e pela primeira vez determinou a tangente a uma curva que não seja o círculo;

- De forma inédita, Arquimedes apresentou os primeiros conceitos de limites e cálculo diferencial, cerca de 19 séculos antes de Newton;

Relação das principais obras de Arquimedes:

- Do Equilíbrio dos Planos
- Dos Flutuantes
- O Arenário
- Da Quadratura da Parábola
- Da Esfera e do Cilindro
- Da Medida do Círculo
- Dos Conóides e Esferóides
- Das Espirais
- Lemas
- Do Método Relativo aos Teoremas Mecânicos
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Arquimedes

Mensagempor Gisisdibo » Seg Out 19, 2015 07:13

I've never had anything like this before, so this is what I want.
Gisisdibo
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Out 19, 2015 06:17
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Mensagens Matemáticas

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?