• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Apolônio de Perga

Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

Apolônio de Perga

Mensagempor Neperiano » Sex Out 31, 2008 20:36

Apolônio de Perga(Pérgamo, 262 a.C. - 190 a.C.) foi um matemático e astrônomo grego da escola alexandrina (c. 261 a.C.), chamado de o Grande Geômetra. Viveu em Alexandria, Éfeso e Pérgamo.

Imagem

Sua obra foi vasta e muitas delas foram perdidas:

- Resultado rápido, onde mostra métodos para efetuar cálculos rapidamente e também uma aproximação do número / pi mais precisa que a dada por Arquimedes;

- Dividir em uma razão(perdida), vários casos sobre o problema: dadas duas retas e um ponto em cada uma, traçar por um terceiro ponto dado uma reta que corte sobre as retas dadas segmentos que estejam numa razão dada;

- Cortar uma área;

- Sobre secção determinada, geometria analítica ;

- Tangências, onde consta o conhecida "problema de Apolônio";

- Inclinações, sobre problemas planos utilizando régua e compasso;
Lugares planos;

O problema de Apolônio:

O problema de Apolônio consta do tratado Tangências e trata do seguinte: Dadas três coisas, cada uma das quais podendo ser um ponto, uma reta ou um círculo, traçar um círculo que é tangente a cada uma das três coisas. Aqui podemos encontrar dez casos, desde o mais simples, o caso de três pontos, até o mais difícil que é traçar um círculo tangente a outros três círculos. Este último caso foi considerado um desafio para os matemáticos dos século XVI e XVII que pensavam que o autor não o teria resolvido e Newton foi um dos que o resolveram, utilizando-se apenas de régua e compasso.

Astronomia:

Na área de Astronomia Apolônio destacou-se como o autor de um modelo matemático muito aceito na antigüidade para a representação do movimento dos planetas. Eudoxo havia usado esferas concêntricas mas Apolônio propôs dois sistemas alternativos baseados em movimentos epicíclicos e movimentos excêntricos. No primerio caso assumia-se que um planeta se move uniformemente ao longo de um epiciclo cujo centro por sua vez se move uniformemente ao longo de um círculo maior com centro na terra, em . No esquema excêntrico o planeta se move ao longo de um círculo grande, cujo centro por sua vez se move em um círculo pequeno de centro em . Se , os dois esquemas serão equivalentes. Enquanto o sistema das esferas homocêntricas, graças a Aristóteles, era o favorito, os esquemas que utilizavam ciclos e epiciclos, graças a Ptolomeu eram adotados por astrônomos que buscavam um refinamento maior nos detalhes e nas previsões.ola Apolonio eu pesquiso sobre ti porque tou a faser um trabalho e gostava de saber como te tornaste num matematico.
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Apolônio de Perga

Mensagempor Gamemasika » Qui Fev 09, 2017 07:48

I have a lot of reasons, but now I was not ready.
Gamemasika
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Fev 09, 2017 07:17
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: formado


Voltar para Mensagens Matemáticas

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59