• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda com P.G.

Ajuda com P.G.

Mensagempor MateusSobreira » Qui Abr 14, 2011 10:22

Pessoal, eu tenho três dúvidas em relação a umas contas de P.G. que irão cair na prova que é sábado. Então dêem uma ajudinha por favor ^^... ai segue:

1)Num certo dia de inverno, exatamente às 4h40min, horário em que abre uma determinada estação do metrô de São Paulo, chega um único passageiro para acessar o metrô por esta estação. O próximo passageiro chega sozinho 48min depois, e o passageiro seguinte chega também solitário 16min após o segundo. E assim sucessivamente, os passageiros chegam um a um, sempre um tempo depois do anterior igual a um terço do tempo entre este e aquele que o antecedeu. Em algum momento, o intervalo de tempo entre dois passageiros consecutivos será tão curto, que estarão chegando praticamente juntos. O horário limite para que isto aconteça é:


2)Três números reais positivos formam uma progressão artimética, e outros três formam uma progressão geométrica. Multiplicando os termos da progressão geométrica obtém-se 12³. Adicionando os termos correspondentes nas duas progressões obtemos a sequência 50, 17 e 11. Qual a razão da progressão artimética?

3)Se a sequência (x, y - 1, 7x) formar, nesta ordem, uma progressão aritmética e a sequência (y, x + 1, x - 1) formar, nesta ordem, uma progressão geométrica, então o produto entre as razões dessas progressões é igual a:

Quem puder me ajudar eu agradeço muito... de 22 questões da ficha de estudo, tem algumas me incomodando, peço que me ajudem :D
OBS: Peço, se possível, que postem o passo a passo para a resolução sou meio lerdo pra entender xD. Obrigado desde já!
MateusSobreira
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Abr 14, 2011 10:13
Formação Escolar: ENSINO MÉDIO
Área/Curso:
Andamento: cursando

Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}