• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fatoração

Fatoração

Mensagempor Higoshi » Sáb Abr 02, 2011 20:40

Eu precisava de ajuda nessa questão da Santa Casa:

Simplificando a expressão (x² + 2x)².(x² - 1) / (x - 2).(x³ - x²), obtemos:

A resposta é : x² - x - 2

Bom, eu tentei abrir as duas partes mas o sinal da parte de cima não bate com a de baixo. Se alguém puder ajudar, eu agradeço.
Higoshi
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Abr 02, 2011 20:17
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: Fatoração

Mensagempor LuizAquino » Sáb Abr 02, 2011 22:13

Higoshi escreveu:Eu precisava de ajuda nessa questão da Santa Casa:

Simplificando a expressão (x² + 2x)².(x² - 1) / (x - 2).(x³ - x²), obtemos:

A resposta é : x² - x - 2

Bom, eu tentei abrir as duas partes mas o sinal da parte de cima não bate com a de baixo. Se alguém puder ajudar, eu agradeço.

Você quis dizer que a expressão é \frac{(x^2+2x)^2(x^2-1)}{(x-2)(x^3-x^2)} ?

Se você quis dizer isso, note que o que você escreveu de fato foi (x^2+2x)^2\frac{(x^2-1)}{(x-2)}(x^3-x^2). Para escrever aquilo, você deveria ter usado algo como [(x² + 2x)².(x² - 1)]/[(x - 2).(x³ - x²)]. Tome cuidado com a precedência das operações e com o uso dos delimitadores adequados.

No caso da primeira expressão, temos que:
\frac{(x^2+2x)^2(x^2-1)}{(x-2)(x^3-x^2)} = \frac{x^2(x+2)^2(x-1)(x+1)}{x^2(x-2)(x-1)} = \frac{(x+2)^2(x+1)}{x-2}, sendo que a simplificação apenas pode ser feita se x for não nulo e diferente de 1.

Note que o gabarito indicado poderia ser esse caso tivéssemos no denominador (x-2)², como você mesmo já havia percebido.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}