por isaiaspereira » Qui Jan 27, 2011 00:53
se em um jogo de conhecimentos gerais, eu respondo 1o questões por rodada, recebendo 4 pontos por resposta certa e perdendo 2 pontos por resposta errada, para que esta rodada seja positiva, quantas questões deverei acertar?
-
isaiaspereira
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Jan 27, 2011 00:16
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Elcioschin » Qui Jan 27, 2011 12:11
C + E = 10 ----> E = 10 - C
4C - 2E > 0 ----> 4C - 2*(10 - C) > 0 ----> 6C - 20 > 0 ----> C > 20/6 ----> C > 3,3 ----> C = 4
No mínimo deverá acertar 4 questões
Editado pela última vez por
Elcioschin em Qui Jan 27, 2011 14:00, em um total de 1 vez.
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por Molina » Qui Jan 27, 2011 12:33
Boa tarde.
Pensei diferente do Elcio.
Acertando 4 das dez questões eu faço 16 pontos.
Errando 6 das dez questões eu faço -12 pontos.
Assim, eu respondi as dez questões e fiz 4 pontos (positivos).
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Elcioschin » Qui Jan 27, 2011 14:02
Desculpem-me: eu digitei um número errado. Já editei.
Assim, ambas as soluções são válidas e levam ao resultado correto..
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação do primeiro grau
por Netu » Sáb Jan 19, 2013 20:20
- 1 Respostas
- 1406 Exibições
- Última mensagem por DanielFerreira

Sáb Jan 19, 2013 20:41
Equações
-
- Equação do primeiro grau simples
por Aprendizmatematica » Sex Fev 17, 2012 17:03
- 2 Respostas
- 2074 Exibições
- Última mensagem por Aprendizmatematica

Sex Fev 17, 2012 19:24
Sistemas de Equações
-
- Problemas de equação do primeiro grau.
por Andrewo » Seg Fev 20, 2012 08:55
- 2 Respostas
- 5541 Exibições
- Última mensagem por Andrewo

Seg Fev 20, 2012 11:35
Sistemas de Equações
-
- Problemas de equação do primeiro grau.
por Andrewo » Qui Fev 23, 2012 18:00
- 3 Respostas
- 4364 Exibições
- Última mensagem por LuizAquino

Sex Fev 24, 2012 10:56
Sistemas de Equações
-
- Problemas de equação do primeiro grau III
por Andrewo » Seg Fev 27, 2012 11:58
- 3 Respostas
- 3997 Exibições
- Última mensagem por MarceloFantini

Ter Fev 28, 2012 16:04
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.