por lucasla » Qui Nov 11, 2010 17:44
Estou com uma dúvida em uma questão simples de Arranjos, até já resolvi a questão, mas uma dúvida ficou:
A questão é a seguinte: Tenho um conjunto de 9 números {1, 2, 3, 4, 5, 6, 7, 8, 9}, e quero saber quantos grupos de 7 elementos distintos posso formar com esses números, de modo que os números 5 e 6 fiquem sempre juntos e nessa mesma ordem.
Eu resolvi a questão da seguinte maneira:
Imaginando 7 espaços, os 2 primeiros espaços são reservados para o 5 e o 6, e os outros espaços vão ser arranjos de 7 elementos 5 a 5. E como o 5 e o 6 podem mudar de posição 6 vezes, multiplico esse arranjo por 6. Ou seja A7,5 * 6 = 15120 elementos diferentes. (que é a resposta correta)
_1_ x _1_ x _7_ x _6 x _5_ x _4_ x _3_ (*6) = 15120
blz, mas fazendo da seguinte maneira, que eu imaginava que também devia dar certo, não obtenho o mesmo resultado:
Como o 5 e o 6 ficarão sempre juntos e nessa ordem, posso imaginá-los como sendo um único elemento que gasta apenas 1 espaço (posso mesmo?), logo teria 8 elementos {1, 2, 3, 4, 5-6, 7, 8, 9} e 6 espaços, bastando fazer o arranjo de 8 elementos 6 a 6. Mas isso me retorna 20160.
Por que fazer isso está errado?
-
lucasla
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Nov 11, 2010 17:30
- Formação Escolar: GRADUAÇÃO
- Área/Curso: num interessa
- Andamento: cursando
por MarceloFantini » Qui Nov 11, 2010 18:20
Se os números 5 e 6 devem estar juntos, podemos considerá-los como um único bloco. E como também não trocam de ordem, só existe uma única maneira de posicioná-los. Logo, sobre 7 elementos distintos. Assim, o número de possibilidades será

. Porém, não necessariamente os números 5 e 6 devem estar posicionados no começo. Podem ser colocados no meio, ou no final, ou depois. Enfim, a lógica é que ele pode trocar de ordem, e para representar essa troca de ordem multiplicamos por 6, que é o número de posições que ele pode ocupar:

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por lucasla » Sex Nov 12, 2010 02:40
certo, foi assim que resolvi, mas por que que daquela segunda forma que eu tentei não funciona também?
-
lucasla
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Nov 11, 2010 17:30
- Formação Escolar: GRADUAÇÃO
- Área/Curso: num interessa
- Andamento: cursando
por MarceloFantini » Sex Nov 12, 2010 15:19
Eu não me lembro a forma de arranjo, mas você tem 7 espaços para preencher e 2 já estão ocupados, portanto acredito que você também tenha que descontar essa quantidade.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida em combinatória
por renataf » Seg Dez 06, 2010 16:25
- 3 Respostas
- 7974 Exibições
- Última mensagem por renataf

Seg Dez 06, 2010 21:24
Estatística
-
- Dúvida em Combinatória - Competição
por andymath » Sex Mai 21, 2010 23:04
- 1 Respostas
- 1454 Exibições
- Última mensagem por angeruzzi

Ter Jun 08, 2010 02:55
Estatística
-
- [ANALISE COMBINATORIA]duvida
por Fabricio dalla » Seg Set 19, 2011 15:24
- 1 Respostas
- 7745 Exibições
- Última mensagem por Neperiano

Seg Set 19, 2011 18:04
Estatística
-
- [Análise combinatória] dúvida
por Tiego » Qua Mai 09, 2012 10:32
- 2 Respostas
- 2689 Exibições
- Última mensagem por joaofonseca

Qui Mai 17, 2012 08:32
Estatística
-
- [Análise combinatória] dúvida
por Tiego » Qua Mai 09, 2012 10:33
- 1 Respostas
- 1965 Exibições
- Última mensagem por fraol

Ter Mai 15, 2012 22:55
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.