• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Logaritmo com raiz e frações

Logaritmo com raiz e frações

Mensagempor _Liilo » Ter Nov 02, 2010 16:11

{log}_{\frac{1}{2}} \frac{\sqrt[]{2}}{2} = \frac{1}{2}

Boa tarde, no livro que utilizo há duas questão com esse cálculo e não consigo entender.

>> Qual é a base de um sistema logaritmico, onde o lagaritmo é \frac{1}{2} e o antilogaritmo é \frac{\sqrt[]{2}}{2} ?

Sei que a base sera meio porque nos próximos exercícios aparece o seguinte:

>> Calcule o valor de "x", e modo que se tenha

{log}_{\frac{1}{2}} x = \frac{1}{2}

Ambos exercícios eu sei o gabarito, mas não sei como chegar na resposta fazendo o exercício.


De qualquer modo, grata.
_Liilo
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Out 31, 2010 18:23
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: técnico em webdesign
Andamento: formado

Re: Logaritmo com raiz e frações

Mensagempor girl » Ter Nov 02, 2010 17:14

para resolver o

{log}_{\frac{1}{2}}x=\frac{1}{2} voce tem elevar a 1/2 a1/2 e igualar a x

{\frac{1}{2}}^{\frac{1}{2}}=x
\sqrt[2]{\frac{1}{2}}=x
\frac{1}{\sqrt[2]{2}}=x
\frac{1.\sqrt[2]{2}}{{\sqrt[2]{2}}_{\sqrt[2]{2}}}
\frac{\sqrt[2]{2}}{\sqrt[2]{4}}=x
\frac{\sqrt[2]{2}}{2}=x

espero ter te ajudado.
girl
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Out 24, 2010 10:55
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: Logaritmo com raiz e frações

Mensagempor _Liilo » Ter Nov 02, 2010 18:21

oi girl,

não compreendo por que a raiz fica só no demoninador ( \frac{1}{\sqrt[2]{2}} = x )
depois disso acho que vc racionaliza...

Continuo sem entender. Por favor, podes detalhar mais, explicar o porquê da
raiz de 2 ter ido como denominador.


Obrigada.
_Liilo
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Out 31, 2010 18:23
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: técnico em webdesign
Andamento: formado

Re: Logaritmo com raiz e frações

Mensagempor girl » Ter Nov 02, 2010 19:02

a raiz fica so no denominador por que a raiz quadrda de 1 é 1 e depois eu fiz a racionalização nos denominadores .
girl
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Out 24, 2010 10:55
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: Logaritmo com raiz e frações

Mensagempor girl » Ter Nov 02, 2010 19:13

uma regra da potenciação é que quando vc tem um numero elevado a um expoente expresso por uma fração voce o transforma em radical.
por exemplo

{2}^{\frac{1}{3}}

\frac{1}{3} o numerador da fração se torna o expoente do numero 2 e o denominador se torna o indice da raiz

\sqrt[3]{2}

um outro exemplo:
{8}^{\frac{2}{3}}= \sqrt[3]{{8}^{2}}= \sqrt[3]{64}
girl
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Out 24, 2010 10:55
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: Logaritmo com raiz e frações

Mensagempor _Liilo » Ter Nov 02, 2010 19:39

Agora entendi \o/
Muito obrigada, girl
_Liilo
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Out 31, 2010 18:23
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: técnico em webdesign
Andamento: formado


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)