• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites com raiz no numerador

Limites com raiz no numerador

Mensagempor liliars » Qua Jul 07, 2010 16:34

Preciso de ajuda com o seguinte limite:

\lim_{x \rightarrow\infty}\frac{\sqrt[]{x² + 2x}}{5x - 1}

Sei que tem de multiplicar pela raiz/raiz, mas depois, não consigo eliminá-la do denominador.
Alguém?
:)
liliars
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Jul 07, 2010 16:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Limites com raiz no numerador

Mensagempor liliars » Qua Jul 07, 2010 16:36

* x² aí em cima, hihi.
liliars
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Jul 07, 2010 16:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Limites com raiz no numerador

Mensagempor Tom » Qui Jul 08, 2010 01:20

Desejamos obter: \lim_{x \rightarrow\infty}\frac{\sqrt{x^2 + 2x}}{5x - 1}

Ora, \lim_{x \rightarrow\infty}\frac{\sqrt{x^2 + 2x}}{5x - 1}=\lim_{x \rightarrow\infty}\frac{\sqrt{x^2(1 + \frac{2}{x})}}{x(5 - \frac{1}{x})}=\lim_{x \rightarrow\infty}\frac{|x|\sqrt{1 + \frac{2}{x}}}{x(5 - \frac{1}{x})}=\lim_{x \rightarrow\infty}\frac{|x|}{5x}

Liliars, como você não definiu se o limite é tendendo a +\infty ou -\infty, vou fazer os dois casos:

Para \lim_{x \rightarrow+\infty}\frac{|x|}{5x}; como x\rightarrow+\infty decorre em |x|=x e assim, \lim_{x \rightarrow+\infty}\frac{|x|}{5x}=\dfrac{1}{5}

Para \lim_{x \rightarrow-\infty}\frac{|x|}{5x}; como x\rightarrow-\infty decorre em |x|=-x e assim, \lim_{x \rightarrow-\infty}\frac{|x|}{5x}=\dfrac{-1}{5}
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado

Re: Limites com raiz no numerador

Mensagempor liliars » Sex Jul 09, 2010 02:16

muito melhor! obrigada!
liliars
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Jul 07, 2010 16:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Limites com raiz no numerador

Mensagempor elinesena » Sáb Nov 24, 2012 15:22

Boa tarde! ^^
Alguém poderia me explicar porque o x fica em módulo?

Grata
elinesena
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Nov 24, 2012 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Contábeis
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.