• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada de uma função

Derivada de uma função

Mensagempor Vitali » Qui Mai 27, 2010 11:20

Olá,

Estou estudando por fora (pois meu curso não aborda calculo (tecnologo)) Calculo I,

E estou vendo Derivada de uma função para determinar a inclinaçao de uma curva. Porém estou com dificuldade em alguns exercícios, de como o
livro chega a determinado resultado.

Como exemplo esse exercicio:

Calcule a derivada f'(x) aplicando a definição da equação: f'(x) = \lim_{\Delta \rightarrow 0} \frac{f(x+\Delta x) - f(x)} {\Delta x}

a) f(x) = x²
b) f(x) = x³ - 12x + 11


[]'s
Vitali
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Mai 26, 2010 14:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencia da Computação
Andamento: cursando

Re: Derivada de uma função

Mensagempor Vitali » Qui Mai 27, 2010 12:24

Por exemplo,

Nesse item ele da: f(x)=\frac{1}{x^2}

ai eu fiz assim:

Passo 1:
f(x + \Delta x)=\frac{1}{(x + \Delta x)^2}

= \frac{1}{x^2 + 2x \Delta x + (\Delta x)^2}

Passo 2:
f(x + \Delta x) - f(x) =

= \frac{1}{x^2 + 2x \Delta x + (\Delta x)^2} - \frac{1}{x^2} =

E agora?
nao sei se tenho q derivar embaixo e depois tirar o minimo...ous e tem outra maneira de sair, tipo uma regrinha...
Vitali
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Mai 26, 2010 14:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencia da Computação
Andamento: cursando

Re: Derivada de uma função

Mensagempor MarceloFantini » Qui Mai 27, 2010 18:37

f'(x) = \lim_{\Delta x \to 0} \frac {f(x+ \Delta x) - f(x)}{\Delta x} \Rightarrow f'(x) = \lim_{\Delta x \to 0} \frac {(x + \Delta x)^2 - x^2}{\Delta x} \Rightarrow f'(x) = \lim_{\Delta x \to 0} \frac {2 x \Delta x + (\Delta x)^2}{\Delta x} \Rightarrow f'(x) = 2x.

Repita o mesmo processo para a letra b, e acredito que o melhor jeito para a função f(x) = \frac {1}{x^2} é reescrevê-la: f(x) = x^{-2}.

Qualquer dúvida comente.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.