• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Relaçao de Recorrencia

Relaçao de Recorrencia

Mensagempor henrique25 » Sáb Mai 08, 2010 17:07

Nao sei se este lugar é adequado entao desculpem.Tenho um problema de recorrencia que nao consigo achar a "forma geral" , é necessario apenas isso p/ resolver o resto eu sei.
O Problema:
P(1)=2
p(n)=2P(n-1)+n2^n
Eu fiz assim mas ta errado:
n=2 - 2.[2P(n-2)+[n2^n-1] + n2^n
n=3 - 2.2.[2P(n-3)+[n2^n-2] + [n2^n -1] +n2^n
n=4 - 2.2.2.[2P(n-4)+[n2^n-3] [n2^n -2] +n2^n-1+n2^n
forma geral:
2^k.P(n-k)+kn.2^n-{(k-1)+(k+2)}/2
Ai fiz:
2^n-1 .P(1)+(n-1).n.2^n-{(n-1)^2-(n-1)}/2
2^n + n^2 - n.2^n -{(n^2 -2n+1-n+1)}/2
2^n+n^2-2n^n -{(n^2-3n+2)}/2
{4^n+2n^2 -4n^2 -n^2+3n-2}/2
Ai deu isso aqui,mas quando substituo nao da certo.
n^2+3n-2+4^n-4n^n

Tem uma formula tbm mas nao consegui:
S(n)=c^(n-1) S(1)+\sum_{i=2}^{n} .c^(n-i) . g(i)

Gostaria que vcs deem dicas de como fazer la em cima so o" n2^n" , porque se fosse um numero eu saberia mas"elevado à n" ta complicado.Se vcs puderem ajudar estarei mt grato.Obrigado
henrique25
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Mai 08, 2010 15:13
Formação Escolar: ENSINO MÉDIO
Área/Curso: informatica
Andamento: cursando

Re: Relaçao de Recorrencia

Mensagempor Douglasm » Sáb Mai 08, 2010 18:49

Olá henrique, de início eu não entendi muito bem a questão, mas creio que você queria achar uma fórmula geral para P(n) sem precisar recorrer ao termo anterior. Sendo assim, eu simplesmente fui desenvolvendo P(1), P(2), P(3), etc. e encontrei a relação geral. Veja só:

P(1) = 2

Seguindo a fórmula da recorrência:

P(2) = 2.P(1) + n.2^n = 2.2 + 2.2^2 = 2^2 + 2.2^2 = (1+2).2^2

P(3) = 2.P(2) + 3.2^3 = 2 .[(1+2).2^2] + 3.2^3 = (1+2+3).2^3

P(4) = 2.P(3) + 4.2^4 = 2.[(1+2+3).2^3] + 4.2^4 = (1+2+3+4).2^4

P(5) = 2.P(4) + 5.2^5 = 2.[(1+2+3+4).2^4] + 5.2^5 = (1+2+3+4+5).2^5

E assim podemos continuar indefinidamente. Não sei se haveria necessidade de uma prova mais formal, uma prova por indução ou algo do tipo, mas é evidente que a fórmula geral de P(n) é:

P(n) = (1+2+3+4+5+...+n).2^n = \frac{n(n+1)}{2}.2^n

Espero ter ajudado. Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59