• Anúncio Global
    Respostas
    Exibições
    Última mensagem

inequações com seno e coseno

inequações com seno e coseno

Mensagempor ezidia51 » Qua Abr 04, 2018 17:57

Alguém pode me ajudar com estas inequações pois não estou conseguindo fazer:
exercicio 1
sin{}^{2}x\gg\frac{1}{4} onde 0\ll x \ll2\pi(faça t=sin x e resolva t^2\gg\frac{1}{4}

exrcicio 2
2cos{}^{2}-sinx-1=0 no intervalo de 0\ll x \ll2\pi

Desde já agradeço pela ajuda!
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 86
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: inequações com seno e coseno

Mensagempor ezidia51 » Qua Abr 04, 2018 18:02

corrigindo a equação do segundo exercício:
2cos{}^{2}x -sinx-1=0 no intervalo de 0\ll x \ll2\pi
Obrigado
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 86
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: inequações com seno e coseno

Mensagempor Gebe » Qui Abr 05, 2018 00:36

Primeiro só pra evitar erros, na primeira questão acredito que tu queria colocar ">" ou "<" ao inves de ">>" ou "<<", ja que o segundo par (o que foi utilizado) representa "MUITO maior (ou MUITO menor)" , enquanto o primeiro representa apenas maior ou menor.

Também como dica, ja que eu vejo MUITA gente com dificuldade em materias que envolvam funções trigonometricas, procure sempre deixar a mão um papel com as principais propriedades e uma tabela com os principais senos, cossenos e tangentes.


1)
\\
sen^2(x)>\frac{1}{4}\\
\\
sen(x)>\sqrt{\frac{1}{4}}\\
\\
sen(x)> \left|\frac{1}{2} \right|\\
\\
Onde\;o\;seno\;é\;maior\;que\;\frac{1}{2}\;(em\;modulo)?\\
\\

Se olharmos pelas tabelas ou circulo trigonometrico, veremos que o seno é maior que \frac{1}{2} (em modulo) em dois intervalos entre 0<x<2pi, sendo eles:
\\
30^\circ<x<150^\circ\\
210^\circ<x<330^\circ

2)
Utilizando a propriedade: cos^2(x)=\frac{1}{2}\left(cos(2x)+1 \right), temos:

\\
2cos^2(x)-sin(x)-1=0\\
\\
2*\frac{1}{2}\left(cos(2x)+1 \right)-sin(x)-1=0\\
\\
cos(2x)+1-sin(x)-1=0\\
\\
cos(2x)=sin(x)\\
\\
Lembre\;que\;cos(a)=sen\left(a+\frac{\pi}{2}+2n\pi \right)\\
Com\;n\;sendo\;inteiro\;(ex.:-1,-2,0,1,2,3...),\;logo:\\
\\
cos(2x)=sin\left(2x+\frac{\pi}{2}+2n\pi \right)\\
\\
sin\left(2x+\frac{\pi}{2}+2n\pi \right)=sin(x)\\
\\
\left(2x+\frac{\pi}{2}+2n\pi \right)=x\\
\\
x=-\frac{\pi}{2}+2n\pi

Como é pedido um "x" entre 0 e 2pi, podemos escolher "n" igual a 1 e, portanto ficamos com:

-\frac{\pi}{2}+2*1*\pi=\frac{3\pi}{2} ou 270°

Espero ter ajudado, qualquer duvida mande uma msg. Bons estudos.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 157
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: inequações com seno e coseno

Mensagempor ezidia51 » Qui Abr 05, 2018 13:09

:y: :y: :y: :y: :y: :y: :y: muito muito obrigado!!!
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 86
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado


Voltar para Inequações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}