• Anúncio Global
    Respostas
    Exibições
    Última mensagem

inequações com seno e coseno

inequações com seno e coseno

Mensagempor ezidia51 » Qua Abr 04, 2018 17:57

Alguém pode me ajudar com estas inequações pois não estou conseguindo fazer:
exercicio 1
sin{}^{2}x\gg\frac{1}{4} onde 0\ll x \ll2\pi(faça t=sin x e resolva t^2\gg\frac{1}{4}

exrcicio 2
2cos{}^{2}-sinx-1=0 no intervalo de 0\ll x \ll2\pi

Desde já agradeço pela ajuda!
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 81
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: inequações com seno e coseno

Mensagempor ezidia51 » Qua Abr 04, 2018 18:02

corrigindo a equação do segundo exercício:
2cos{}^{2}x -sinx-1=0 no intervalo de 0\ll x \ll2\pi
Obrigado
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 81
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: inequações com seno e coseno

Mensagempor Gebe » Qui Abr 05, 2018 00:36

Primeiro só pra evitar erros, na primeira questão acredito que tu queria colocar ">" ou "<" ao inves de ">>" ou "<<", ja que o segundo par (o que foi utilizado) representa "MUITO maior (ou MUITO menor)" , enquanto o primeiro representa apenas maior ou menor.

Também como dica, ja que eu vejo MUITA gente com dificuldade em materias que envolvam funções trigonometricas, procure sempre deixar a mão um papel com as principais propriedades e uma tabela com os principais senos, cossenos e tangentes.


1)
\\
sen^2(x)>\frac{1}{4}\\
\\
sen(x)>\sqrt{\frac{1}{4}}\\
\\
sen(x)> \left|\frac{1}{2} \right|\\
\\
Onde\;o\;seno\;é\;maior\;que\;\frac{1}{2}\;(em\;modulo)?\\
\\

Se olharmos pelas tabelas ou circulo trigonometrico, veremos que o seno é maior que \frac{1}{2} (em modulo) em dois intervalos entre 0<x<2pi, sendo eles:
\\
30^\circ<x<150^\circ\\
210^\circ<x<330^\circ

2)
Utilizando a propriedade: cos^2(x)=\frac{1}{2}\left(cos(2x)+1 \right), temos:

\\
2cos^2(x)-sin(x)-1=0\\
\\
2*\frac{1}{2}\left(cos(2x)+1 \right)-sin(x)-1=0\\
\\
cos(2x)+1-sin(x)-1=0\\
\\
cos(2x)=sin(x)\\
\\
Lembre\;que\;cos(a)=sen\left(a+\frac{\pi}{2}+2n\pi \right)\\
Com\;n\;sendo\;inteiro\;(ex.:-1,-2,0,1,2,3...),\;logo:\\
\\
cos(2x)=sin\left(2x+\frac{\pi}{2}+2n\pi \right)\\
\\
sin\left(2x+\frac{\pi}{2}+2n\pi \right)=sin(x)\\
\\
\left(2x+\frac{\pi}{2}+2n\pi \right)=x\\
\\
x=-\frac{\pi}{2}+2n\pi

Como é pedido um "x" entre 0 e 2pi, podemos escolher "n" igual a 1 e, portanto ficamos com:

-\frac{\pi}{2}+2*1*\pi=\frac{3\pi}{2} ou 270°

Espero ter ajudado, qualquer duvida mande uma msg. Bons estudos.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 152
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: inequações com seno e coseno

Mensagempor ezidia51 » Qui Abr 05, 2018 13:09

:y: :y: :y: :y: :y: :y: :y: muito muito obrigado!!!
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 81
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado


Voltar para Inequações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59


cron