• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Movimento de um ponto material

FAP0153
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

Movimento de um ponto material

Mensagempor alan_lima » Qua Nov 29, 2017 12:34

Estou precisando de ajuda com essa questão, se alguém puder ajudar eu agradeço.

Um ponto material de massa m move-se num intervalo de tempo I=[0,T], com T>0, no plano vertical xy, apenas sob a ação da força peso, e sua posição (x(t),y(t)) satisfaz y(t)=4-[x(t)]^2, para todo t. nessas condições, para todo t em I:

a) |x'(t)|= 2|t|
b) |x'(t)|= t^2
c) |x'(t)|= 0
d) |x'(t)|= raiz(5t)
e) |x'(t)|= 5
alan_lima
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Ago 05, 2011 23:06
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia
Andamento: cursando

Voltar para Mecânica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}