• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada]

[Derivada]

Mensagempor violettav » Qui Nov 02, 2017 16:21

Seja g uma funcao derivavel e f(x) = (cos x) * g²(tg (x / (x² + 2)). Sabendo que g(0) = 1/2 e g'(0) = 1, calcule f ' (0).

resposta : 1/2
violettav
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Nov 02, 2017 16:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencia da Computaçao
Andamento: cursando

Re: [Derivada]

Mensagempor jbandrade1618 » Qui Jan 11, 2018 14:00

Olá Violetta.

Essa questão pede um pouco de paciência e organização para aplicar a regra da cadeia. Como o x da função será sempre substituído por zero, será fácil no final substituir os valores.

Resolução:
f'(x)=df(x)=dcos(x)*{g}^{2}\left( tg\left(\frac{x}{{x}^{2}+2} \right)\right)+cos(x)*2g\left( tg\left(\frac{x}{{x}^{2}+2} \right)\right)*dtg\left(\frac{x}{{x}^{2}+2} \right)*d\left(\frac{x}{{x}^{2}+2} \right)
\Rightarrow f'(x)=-sen(x)*{g}^{2}\left( tg\left(\frac{x}{{x}^{2}+2} \right)\right)+cos(x)*2g\left( tg\left(\frac{x}{{x}^{2}+2} \right)\right)*{sec}^{2}\left(\frac{x}{{x}^{2}+2} \right)*\left(\frac{-{x}^{2}+2}{{({x}^{2}+2})^{2}}\right)

Agora basta substituir x por zero:
f'(0)=-sen(0)*{g}^{2}\left( tg\left(\frac{0}{{0}^{2}+2} \right)\right)+cos(0)*2g\left( tg\left(\frac{0}{{0}^{2}+2} \right)\right)*{sec}^{2}\left(\frac{0}{{0}^{2}+2} \right)*\left(\frac{-{0}^{2}+2}{{({0}^{2}+2})^{2}}\right)
\Rightarrow f'(0)=0*{g}^{2}(0)+1*2g(0)*{sec}^{2}(0)*\left(\frac{2}{4}\right)=1*2*\frac{1}{2}*{1}^{2}*\frac{1}{2}=\frac{1}{2}
\Rightarrow f'(0)=\frac{1}{2}

Espero ter ajudado. :y:
jbandrade1618
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jan 11, 2018 01:18
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.


cron