• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Achar a Equação de uma reta tangente

Achar a Equação de uma reta tangente

Mensagempor Gabriela Amaral » Dom Set 10, 2017 13:41

Gostaria que me mostrasse o erro, pois a resposta no gabarito é y = x + 3.
Refiz várias vezes e não cheguei na resposta acima.

Determine a equação da reta que seja tangente à curva da função dada no ponto especificado:


f(x)=({x}^{2}-x)(3+2x); \  (-1;2)
f(x)=3{x}^{2}+2{x}^{2}-3x-2{x}^{2}\\
f'(x)=6x+4x-3-4x\\
f(-1)=6(-1)+4(-1)-3-4(-1)\\
f(-1)=-6-4-3+4\\
f(-1)=-9

y-yo=m(x-xo)\\
y-2=-9(x+1)\\
y-2=-9x-9\\
y=-9x-9+2\\
y=-9x-7 *-)
Gabriela Amaral
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Set 10, 2017 13:16
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Achar a Equação de uma reta tangente

Mensagempor Gabriela Amaral » Dom Set 10, 2017 18:47

Consegui achar a resposta ! :-D :idea:
Deve ser usada a regra do Produto ! (até então não conhecia, visto que somente agora avancei nos exercícios propostos pelo meu professor)
Então, lá vai :

f(x)= ({x}^{2}-x)(3+2x); \ (-1;2)\\
f'(x)= u'\ . v + v'\ . u
f'(x)=(2x-1)(3+2x)+2({x}^{2}-x)\\
f'(x)=6x+4{x}^{2}-3-2x+2{x}^{2}-2x\\
f'(x)=2x+6{x}^{2}-3\\
f(-1)=2(-1)+6{-1}^{2}-3\\
f(-1)=-2+6-3\\
f(-1)=1\\
\\
y-yo=m(x-xo)\\
y-2=1(x+1)\\
y=x+1+2
y=x+3 ;)
Gabriela Amaral
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Set 10, 2017 13:16
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.