• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação da reta tangente]

[Equação da reta tangente]

Mensagempor carolzinhag3 » Seg Out 03, 2016 19:43

Encontre as equações para as retas tangentes a elipse \[\frac{x^2}{4}+ y^2 =1\] e passam pelo ponto (0,2)

*Se puderem explicar de forma detalhada, ficarei grata.
carolzinhag3
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mai 01, 2016 23:00
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Equação da reta tangente]

Mensagempor adauto martins » Sex Jan 06, 2017 15:18

eq.reta tangente:
{y}_{t}-{y}_{0}=f'({x}_{0})(x-{x}_{0})...({x}_{0},{y}_{0})=(0,2)...
vamos achar o coeficiente angular que é dado pela derivada da funçao no ponto especificado,ou seja:
d/dx(({x}^{2}/4)+{y}^{2})=d/dx(1)=0\Rightarrow 


2.(x/4)+2.y.dy/dx=0\Rightarrow 

f'(x)=(-1/4)(x/y)...d/dx(({x}^{2}/4)+{y}^{2})=d/dx(1)=0\Rightarrow 


2.(x/4)+2.y.dy/dx=0\Rightarrow 

f'(x)=dy/dx=(-1/4)(x/y)...

no ponto especificado (0,2)\Rightarrow f'(0)=(-1/4)(0/2)=0\Rightarrow {y}_{t}-2=0\Rightarrow {y}_{t}=2...

para efeito de exemplo vamos tomar o ponto (1,2)\Rightarrow f'(1)=(-1/4)(1/2)=-1/8\Rightarrow 


{y}_{t}-2=(-1/8)(x-1)\Rightarrow

{y}_{t}=-x/8+((1/8)+2)...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 670
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}