por Lulumatematica » Seg Jun 27, 2016 01:25
1. Havendo nutrientes suficientes, o crescimento de uma população P de bactérias pode ser modelado em função do tempo t pela equação P(t) = P0(1 + i)^t onde P0 é a população inicial e i é a taxa de crescimento por período. A linha tracejada no gráfico ao lado mostra a função P(t) = 100 ? 1,15^t, que corresponde a uma população inicial de 100 bactérias que aumenta 15% a cada período.
Escolha a alternativa que melhor corresponde à linha tracejada.
a. P cresce de maneira linear até 600, depois não cresce mais. Podemos dizer que limt?? P(t) = 600.
b. P cresce rapidamente no início, e a taxa de crescimento vai diminuindo à medida que a população se aproxima de 600. Dizemos que limt?? P(t) = 600.
c. P cresce sem limitação e de maneira linear. Dizemos que limt?? P(t) = ?.
d. P cresce sem limitação e de maneira exponencial. Podemos dizer que limt?? P(t) = ?.
e. P cresce sem limitação e de maneira exponencial. Podemos dizer que limt?? P(t) = 800.
2. Um modelo um pouco mais realista levaria em conta a capacidade máxima do habitat, representada por K. A equação então fica:
P(t) =K(1 + i)^t/K/P0 + (1 + i)^t -1
A linha cheia no gráfico mostra a função P(t) =600?1,15^t/6+1,15^t?1,ou seja, as mesmas 100 bactérias iniciais crescendo inicialmente a 15% por período, porém agora a capacidade máxima do habitat é 600.
Escolha a alternativa que melhor corresponde à linha cheia.
a. P cresce de maneira linear até 600, depois não cresce mais. Podemos dizer que limt?? P(t) = 600.
b. P cresce rapidamente no início, e a taxa de crescimento vai diminuindo à medida que a população se aproxima de 600. Dizemos que limt?? P(t) = 600.
c. P cresce sem limitação e de maneira linear. Dizemos que limt?? P(t) = ?.
d. P cresce sem limitação e de maneira exponencial. Dizemos que limt?? P(t) = ?.
e. P cresce sem limitação e de maneira exponencial. Dizemos que limt?? P(t) = 800.
3. Geometricamente, a derivada representa
a. os valores de x onde o gráfico da função corta o eixo x.
b. a inclinação da reta tangente ao gráfico da função em um ponto dado.
c. uma parábola.
d. os valores de y onde o gráfico da função corta o eixo y.
e. a soma dos quadrados dos catetos.
- Anexos
-

- grafico
-
Lulumatematica
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Jun 27, 2016 01:01
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Agronomia
- Andamento: cursando
Voltar para Matemática Financeira
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivadas] Dificuldade para calcular derivadas CDI 1
por srmai » Seg Nov 04, 2013 01:21
- 0 Respostas
- 2167 Exibições
- Última mensagem por srmai

Seg Nov 04, 2013 01:21
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] Interpretação de derivadas e funções
por vinik1 » Qua Out 12, 2011 16:03
- 5 Respostas
- 7260 Exibições
- Última mensagem por vinik1

Qui Out 13, 2011 10:48
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] Derivadas em pontos dados
por MarlonMO250 » Sex Mar 01, 2013 21:02
- 6 Respostas
- 4689 Exibições
- Última mensagem por Russman

Sáb Mar 02, 2013 03:42
Cálculo: Limites, Derivadas e Integrais
-
- (derivadas) derivadas com raiz como se faz
por jana garcia » Qua Jun 25, 2014 00:28
- 1 Respostas
- 2832 Exibições
- Última mensagem por e8group

Qua Jun 25, 2014 01:13
Cálculo: Limites, Derivadas e Integrais
-
- [Derivadas] Derivadas com definição de limites
por concurseironf » Sex Set 05, 2014 18:11
- 1 Respostas
- 1913 Exibições
- Última mensagem por DanielFerreira

Dom Set 07, 2014 22:18
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.