• Anúncio Global
    Respostas
    Exibições
    Última mensagem

INEQUAÇÕES MODULARES

INEQUAÇÕES MODULARES

Mensagempor petras » Ter Jun 14, 2016 17:15

Alguém poderia ajudar na resolução abaixo. Não consigo chegar na resposta:

Determine todos os valores de x IR que satisfazem simultaneamente às inequações seguintes: Resposta: S = {x E IR / x ≤ -4 ou -1 < x ≤ 1}

a) (2x+3 ) / (x-1) >= 1
b) -x^2 + 3x - 2 <= 0
c) |x-2| - |x| >= 0

Em a) cheguei a x <= -4 e x > 1
Em b) cheguei a x <= 1 e x>= 2
Estou com problemas na inequação c

Desde já fico grato.
petras
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 58
Registrado em: Sex Jan 22, 2016 21:19
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: INEQUAÇÕES MODULARES

Mensagempor petras » Seg Out 31, 2016 21:15

Letra c)
Para x > 2 --> x-2 - x >= 0 --> -2 >= 0 Não atende
Para 0 <= x <= 2 ---> -x + 2 -x >= 0 ---> -2x + 2 >= 0 ---> x <= 1 (OK)
Para x <= 0 ---> -x + 2 + x <= 0 ---> 2 <= 0 Não atende
Portanto x <= 1

Da interseção de a) x <=-4 ou x >=1 b) x<=1 ou x>=2 e c) x <= 1 teremos como solução:
S = {x E IR / x ≤ -4} * A resposta fornecida está errada.
petras
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 58
Registrado em: Sex Jan 22, 2016 21:19
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Inequações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?