• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Corpo

Corpo

Mensagempor GehSillva7 » Qui Fev 25, 2016 12:55

Seja p > 0 um numero primo e seja Q[sqrt(p)] = {a+b sqrt(p); a, b E Q}. Defina as operações + e . em Q[ sqrt(p] como (a+b sqrt(p)) + (c + d sqrt(p)) = (a+c)+(b+d) sqrt(p) e (a+b sqrt(p)) . (c + d sqrt(p)) = (ac + pbd) + (ad+bc) sqrt(p). Mostre que Q[sqrt(p)] é um corpo.
GehSillva7
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Fev 23, 2014 21:50
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Corpo

Mensagempor adauto martins » Dom Fev 28, 2016 13:38

pelo q. pude traduzir do q. vc escreveu e mostrar q...Q={a+b\sqrt[]{p},onde a,b,p\in Q,,p primo}...bom,um corpo é um espaço vetorial de dimensao nula,entao temows aquelas 8 propriedades a ser verificadas,farei algumas,tdbem...
1)0\in Q, pois 0+x=(0+0\sqrt[]{p})+(a+b\sqrt[]{p})=(0+a)+(0+b)\sqrt[]{p}=a+b\sqrt[]{p}=x...
2)1\in Q,pois...1.x=(1+0\sqrt[]{p}).(a+b\sqrt[]{p})=(1.a+p.0)+(1.b+0.p.b)\sqrt[]{p}=a+b\sqrt[]{p}=x...
3)seja x\neq 0\Rightarrow \exists {x}^{-1}\in Q,tal q. x.{x}^{-1}=1,de fato...
x.{x}^{-1}=(a+b\sqrt[]{p}).(1/(a+b\sqrt[]{p})=(a+b\sqrt[]{p}).(a-b\sqrt[]{p})/({a}^{2}-p.{b}^{2})={a}^{2}-p.{b}^{2}/({a}^{2}-p.{b}^{2})=1...as outras 5 sao mais facieis...verifique-as...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Corpo

Mensagempor GehSillva7 » Dom Fev 28, 2016 15:40

Show! Muito obrigada!
GehSillva7
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Fev 23, 2014 21:50
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.