por holandaleo » Sáb Fev 13, 2016 18:48
Olá a todos, alguém pode me ajudar com a resolução dessa questão que envolve PIF?
-Demonstrar a seguinte preposição;
![x+{x}^{2}+{x}^{3}+{x}^{4}...{x}^{n}=\frac{{1-x}^{n+1}}{1-x}[para ] n\geq1,x\neq1 x+{x}^{2}+{x}^{3}+{x}^{4}...{x}^{n}=\frac{{1-x}^{n+1}}{1-x}[para ] n\geq1,x\neq1](/latexrender/pictures/4cd36ba7ea11c4173a643e098f89659c.png)
-
holandaleo
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sáb Fev 13, 2016 18:25
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Engenharia de Computação
- Andamento: cursando
por adauto martins » Qui Fev 25, 2016 21:31
soma dos termos de uma PG finita de razao,q=x...

...a questao apresentada nao esta correta,pois:

...
logo
![S=x+{x}^{2}+...+{x}^{n}=x.(1-{x}^{n+1})/(1-x),p/x\neq 1,[\tex] S=x+{x}^{2}+...+{x}^{n}=x.(1-{x}^{n+1})/(1-x),p/x\neq 1,[\tex]](/latexrender/pictures/908bc32ecd93cae8840167fa65b2a95a.png)

...vamos á prova por induçao...

...
vamos supor p/

, ou seja

verdadeira...entao...
p/

,teriamos...

-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Indução finita !
por Lucas Alves Ribeiro » Dom Mar 10, 2013 22:47
- 0 Respostas
- 1138 Exibições
- Última mensagem por Lucas Alves Ribeiro

Dom Mar 10, 2013 22:47
Álgebra Elementar
-
- Princípio da Indução Finita
por Fontelles » Dom Jan 17, 2010 14:42
- 9 Respostas
- 90074 Exibições
- Última mensagem por Vennom

Qui Abr 26, 2012 23:04
Funções
-
- PIF - Principio da Indução Finita
por ederj » Seg Jun 28, 2010 13:35
- 3 Respostas
- 7726 Exibições
- Última mensagem por Tom

Sex Jul 02, 2010 20:01
Funções
-
- Álgebra: Indução Finita
por Caeros » Ter Mar 08, 2011 13:13
- 6 Respostas
- 3820 Exibições
- Última mensagem por MarceloFantini

Ter Mar 08, 2011 21:44
Álgebra Elementar
-
- Indução Finita FIbonacci
por Garota nerd » Ter Mai 03, 2011 17:52
- 3 Respostas
- 2814 Exibições
- Última mensagem por Garota nerd

Qui Mai 05, 2011 00:43
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.