• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação raiz e polinomio

Equação raiz e polinomio

Mensagempor Rosi7 » Sáb Mai 23, 2015 09:44

Para a={3}^{-1}.{81}^{2} e para b={2}^{4}.{6}^{3}.{9}^{2}  resolva \sqrt[7]{a.b}
Rosi7
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Mai 02, 2015 18:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Equação raiz e polinomio

Mensagempor nakagumahissao » Dom Mai 24, 2015 01:54

Rosi7, pelas regras deste fórum você deveria ter detalhado o que já tentou fazer. Desta vez vou responder a questão mas por favor na próxima vez, tente nos dizer o que já foi feito por você para sanarmos sua dúvida e para que não fiquemos aqui apenas resolvendo os seus problemas de modo que você fique sem sem o principal, aprender.


Resolução:

Substituindo-se a e b debaixo da raiz usando os valores dados, teremos:

[1] \sqrt[7]{ab} = \sqrt[7]{{3}^{-1} \cdot {81}^{2} \cdot {2}^{4} \cdot {6}^{3} \cdot {9}^{2}} =

Decompondo-se 81, 6 e 9 tem-se que:

81 = {3}^{4}
{6}^{3} = {3}^{3} \cdot {2}^{3}
9 = {3}^{2}

Continuando a resolver [1] e utilizando as várias propriedades da radiciação, temos:

= \sqrt[7]{{3}^{-1} \cdot {({3}^{4})}^{2} \cdot {2}^{4} \cdot {3}^{3} \cdot {2}^{3} \cdot {({3}^{2})}^{2}} = \sqrt[7]{{3}^{-1} \cdot {3}^{8} \cdot {2}^{4} \cdot {3}^{3} \cdot {2}^{3} \cdot {3}^{4}} =

= \sqrt[7]{{3}^{14} \cdot {2}^{7}} = \sqrt[7]{{3}^{14}}  \cdot \sqrt[7]{{2}^{7}} = {3}^{2} \cdot 2 = 9 \times 2 = 18
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: Equação raiz e polinomio

Mensagempor Rosi7 » Qui Mai 28, 2015 19:02

Grata e desculpa, esqueci de dizer, mas da próxima vez digo. Esta questão, não é do meu curso, é de um livro de matemática, aí fui fazer, e deu um numero enorme dentro da raiz, pois eu resolvia as potencias, multiplicava e depois ia tirar da raiz.
Rosi7
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Mai 02, 2015 18:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física
Andamento: cursando

Re: Equação raiz e polinomio

Mensagempor Rosi7 » Qui Mai 28, 2015 19:33

Os: Achei interessante o poeta, educador Taylor Maly.
Agora a frase: "Eu faço crianças ficarem sentadas por mais de 40 minutos em sala de aula em silêncio absoluto."
Ele deve ser muito bom mesmo. Desculpa, debater o poema com você, mas isso me pareceu um pouco Freiriano.
Embora concorde que:
[...] Eu faço os alunos imaginarem.
Questionarem.
Criticarem.
Eu faço os alunos demonstrarem todos os cálculos matemáticos realizados para chegar às respostas dos problemas.
E faço com que apresentem a redação final como se nunca tivessem produzido um rascunho sequer.
Eu os faço entender que, se você tem um talento, deve segui-lo. [...]

Isso é Vygotsky etc .. e eu amo!
Acho que vou pesquisar sobre Maly.. e continuem colocando as frases, são maravilhosas!

Abraço!
Rosi7
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Sáb Mai 02, 2015 18:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física
Andamento: cursando


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D