• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites]

[Limites]

Mensagempor Subnik » Sex Abr 03, 2015 19:43

Calcule o limite:
\lim_{x\rightarrow+/-\infty}\sqrt[]{x^2-x.\Pi}-\sqrt[]{x^2-1}

Resposta: +/- \frac{\Pi}{2}
Subnik
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Abr 03, 2015 19:31
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Limites]

Mensagempor adauto martins » Sáb Abr 04, 2015 12:14

L=\lim_{x\rightarrow \infty}{x}^{2}(\sqrt[]{1-\pi/x}-\sqrt[]{1-1/{x}^{2}})=\lim_{x\rightarrow \infty}{x}^{2}(\sqrt[]{1-\pi/x}-\sqrt[]{1-1/{x}^{2}}).(\sqrt[]{1-\pi/x}+\sqrt[]{1-1/{x}^{2}}/(\sqrt[]{1+\pi/x}+\sqrt[]{1-1/{x}^{2}})=\lim_{x\rightarrow \infty}{x}^{2}(1-\pi/x-1-1/{x}^{2})/\sqrt[]{1-\pi/x}+\sqrt[]{1-1/{x}^{2}})=\lim_{x\rightarrow \infty}-(\pi.x+1)/(\sqrt[]{1-\pi/x}+\sqrt[]{1-1/{x}^{2}})==\lim_{x\rightarrow \infty}-( \pi x + 1)/\sqrt[]{1-\pi/x}+\sqrt[]{1-1/{x}^{2}})=\lim_{x\rightarrow \infty}-x(\pi+1/x)/(\sqrt[]{1-\pi/x}+\sqrt[]{1-1/{x}^{2}})=\lim_{x\rightarrow \infty}-(\pi+1/{x}^{2})/(\sqrt[]{1/{x}^{2}-\pi/{x}^{3}}+\sqrt[]{1-1/{x}^{4}}=-\pi/2
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Limites]

Mensagempor DanielFerreira » Sáb Abr 04, 2015 12:23

Olá Subnik,
seja bem-vindo!

\\ \lim_{x \to \infty} \sqrt{x^2 - x \cdot \pi} - \sqrt{x^2 - 1} = \\\\\\ \lim_{x \to \infty} \sqrt{x^2 - x \cdot \pi} - \sqrt{x^2 - 1} \times \frac{\sqrt{x^2 - x \cdot \pi} + \sqrt{x^2 - 1}}{\sqrt{x^2 - x \cdot \pi} + \sqrt{x^2 - 1}} = \\\\\\ \lim_{x \to \infty}\frac{x^2 - x \cdot \pi - (x^2 - 1)}{\sqrt{x^2 - x \cdot \pi} + \sqrt{x^2 - 1}} = \\\\\\ \lim_{x \to \infty}\frac{\cancel{x^2} - x \cdot \pi - \cancel{x^2} + 1}{\sqrt{x^2 \left ( 1 - \frac{\pi}{x} \right )} + \sqrt{x^2 \left ( 1 - \frac{1}{x^2} \right )}} = \\\\\\ \lim_{x \to \infty}\frac{- x \cdot \pi + 1}{x \cdot \sqrt{\left ( 1 - \frac{\pi}{x} \right )} + x \cdot \sqrt{\left ( 1 - \frac{1}{x^2} \right )}} =

\\ \lim_{x \to \infty}\frac{\cancel{x} \left ( - \pi + \frac{1}{x} \right )}{\cancel{x} \left ( \sqrt{1 - \frac{\pi}{x}} + \sqrt{1 - \frac{1}{x^2}} \right )} = \\\\\\ \lim_{x \to \infty}\frac{- \pi + \frac{1}{x}}{\sqrt{1 - \frac{\pi}{x}} + \sqrt{1 - \frac{1}{x^2}}} = \\\\\\ \frac{- \pi + 0}{\sqrt{1 - 0} + \sqrt{1 - 0}} = \\\\\\ \frac{- \pi}{1 + 1} = \\\\\\ \boxed{- \frac{\pi}{2}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 14 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59