• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Fatoração] Não estou conseguindo resolver esse exercício

[Fatoração] Não estou conseguindo resolver esse exercício

Mensagempor Ze Birosca » Qua Fev 04, 2015 18:55

Sendo: x - \frac{1}{x} = 3

dertemine o valor de x^4 + \frac{1}{x^4}

o gabarito marca 119, mas eu não faço a minima de ideia de como chegar a esse resultado.

A primeira coisa que eu pensei em fazer foi 3^4, mas acho que estou errado.
Ze Birosca
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Fev 04, 2015 18:43
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Fatoração] Não estou conseguindo resolver esse exercíci

Mensagempor Russman » Qua Fev 04, 2015 20:06

Tome x - \frac{1}{x} = a. Agora, elevemos ao quadrado.

\left ( x-\frac{1}{x} \right )^2 = x^2-1-1+\frac{1}{x^2} = x^2+\frac{1}{x^2} - 2

Portanto, x^2+\frac{1}{x^2} = a^2 + 2.

Repitamos o processo.

\left (x^2+\frac{1}{x^2}   \right )^2= x^4 +1+1+\frac{1}{x^4} = x^4 + \frac{1}{x^4}+2

Portanto, x^4 + \frac{1}{x^4}+2 = (a^2+2)(a^2+2) \Rightarrow x^4 + \frac{1}{x^4} = (a^2+2)^2 -2.

Fazendo a=3 você obtém 119.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Fatoração] Não estou conseguindo resolver esse exercíci

Mensagempor Ze Birosca » Qua Fev 04, 2015 20:49

obrigado Russman, mas não estou conseguindo enteder essa parte aqui:

\left ( x-\frac{1}{x} \right )^2 = x^2-1-1+\frac{1}{x^2} = x^2+\frac{1}{x^2} - 2

de onde vêm esse 1-1?

se eu fizesse:

\left ( x-\frac{1}{x} \right )^2 = x^2-\frac{1^2}{x^2}

eu estaria errando?
Ze Birosca
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Fev 04, 2015 18:43
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Fatoração] Não estou conseguindo resolver esse exercíci

Mensagempor Russman » Qua Fev 04, 2015 20:58

Certamente.

Lembre-se que (a+b)^2 = a^2 +2ab+b^2 para todo a e b reais.

É fácil verificar a validade desta identidade. Tome, por exemplo, a=2 e b=3. Assim,

(2+3)^2 = 2^2 + 2.2.3 + 3^2 = 4  + 12 +9 = 25

como devia ser, já que sabemos que (2+3)^2 = 5^2 = 25.

Agora, tome a=x e b = -\frac{1}{x}.

Assim, seguindo a identidade,

\left (x-\frac{1}{x}   \right )^2= x^2  +2.x.\frac{1}{x}+\frac{1}{x}.\frac{1}{x} =x^2+2+\frac{1}{x^2}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Fatoração] Não estou conseguindo resolver esse exercíci

Mensagempor Ze Birosca » Qua Fev 04, 2015 21:56

Ah, agora entendi.

fiz agora com o a = 3 e cheguei ao resultado.

Obrigado.
Ze Birosca
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Fev 04, 2015 18:43
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?