por Lais-Lima » Sáb Set 13, 2014 13:08
Na figura seguinte, sabe-se que
AB = AD e que o
ângulo ABC menos o ângulo ACB é 30°. Então o
ângulo CBD é igual a:
Comecei o exercício tentando nomear os ângulos.
ABD =

ADB =

BAD =

CDB =

+

CBD =

BCD =

À partir daí estou tentando encontrar igualdades, mas não consigo resolver até o final. Por exemplo:
2

+

= 180°

+

+

+

= 180°

+

-

= 30°
Alguém pode me ajudar?
- Anexos
-
![20140913_102252-1[1].jpg (1.49 MiB) Exibido 1027 vezes 20140913_102252-1[1].jpg](./download/file.php?id=2086&t=1)
-
Lais-Lima
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sáb Set 13, 2014 12:51
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Pessoa Estranha » Dom Set 14, 2014 23:13
Olá!
Note que:

Substituindo na segunda igualdade:

Daí, na terceira igualdade:

É este o resultado?
Entendeu?
-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Lais-Lima » Seg Set 15, 2014 17:37
Isso! Entendi sim, obrigada!

-
Lais-Lima
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sáb Set 13, 2014 12:51
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Triângulos] Pontos Notáveis
por Lais-Lima » Seg Set 15, 2014 17:56
- 0 Respostas
- 697 Exibições
- Última mensagem por Lais-Lima

Seg Set 15, 2014 17:56
Geometria Plana
-
- Pontos notáveis de um triÂngulo
por Brufofs » Ter Mar 13, 2012 19:37
- 5 Respostas
- 4914 Exibições
- Última mensagem por Brufofs

Qua Mar 14, 2012 14:46
Geometria Plana
-
- pontos notáveis do triângulo
por lenda » Qua Jul 18, 2012 17:01
- 8 Respostas
- 6051 Exibições
- Última mensagem por lenda

Qui Jul 19, 2012 15:38
Geometria Plana
-
- pontos notáveis do triângulo
por lenda » Qua Jul 18, 2012 17:23
- 2 Respostas
- 1951 Exibições
- Última mensagem por lenda

Qua Jul 18, 2012 20:20
Geometria Plana
-
- pontos notáveis do triângulo
por lenda » Qua Jul 18, 2012 20:57
- 2 Respostas
- 1756 Exibições
- Última mensagem por lenda

Qui Jul 19, 2012 14:53
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.