• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Triângulos] Pontos Notáveis

[Triângulos] Pontos Notáveis

Mensagempor Lais-Lima » Sáb Set 13, 2014 13:08

Na figura seguinte, sabe-se que AB = AD e que o ângulo ABC menos o ângulo ACB é 30°. Então o ângulo CBD é igual a:

Comecei o exercício tentando nomear os ângulos.
ABD = \alpha
ADB = \alpha
BAD = \beta
CDB = \alpha + \beta
CBD = \theta
BCD = \gamma

À partir daí estou tentando encontrar igualdades, mas não consigo resolver até o final. Por exemplo:

2\alpha + \beta = 180°
\alpha + \beta + \gamma + \theta = 180°
\alpha + \theta - \gamma = 30°


Alguém pode me ajudar?
Anexos
20140913_102252-1[1].jpg
Lais-Lima
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Set 13, 2014 12:51
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Triângulos] Pontos Notáveis

Mensagempor Pessoa Estranha » Dom Set 14, 2014 23:13

Olá!

Note que:

2\alpha + \beta = 180 \rightarrow \beta = 180 -2\alpha

Substituindo na segunda igualdade:

-\alpha + \gamma + \theta = 0

Daí, na terceira igualdade:

\gamma + \theta = \alpha \rightarrow \gamma + \theta + \theta - \gamma = 30 \rightarrow 2\theta = 30 \rightarrow \theta = 15

É este o resultado?

Entendeu?
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Triângulos] Pontos Notáveis

Mensagempor Lais-Lima » Seg Set 15, 2014 17:37

Isso! Entendi sim, obrigada! ;)
Lais-Lima
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Set 13, 2014 12:51
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}