• Anúncio Global
    Respostas
    Exibições
    Última mensagem

### Probabilidade ###

### Probabilidade ###

Mensagempor Evaldo » Seg Jan 04, 2010 15:31

Desitos não cheguei ao resutado do gabarito.

Uma urna I contém 2 bolas vermelhas e 3 bolas brancas e outra II, contém 4 bolas vermelhas e 5 bolas brancas. Sorteia-se uma urna e dela retira-se, ao acaso, uma bola. Qual é a probabilidade de que a bola seja vermelhae tenha vindo da urna I.?

Gabarito: 1/5


Jogando-se ao mesmo tempo 2 dados honestos, a probabilidade de a soma dos pontos ser igual a 5 é:

Gabarito: 1/9
Há homens que lutam um dia, e são bons;
Há outros que lutam um ano, e são melhores;
Há aqueles que lutam muitos anos, e são muito bons;
Porém há os que lutam toda a vida
Estes são os imprescindíveis
Bertold Brecht
Evaldo
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Out 14, 2009 13:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências Contábeis
Andamento: formado

Re: ### Probabilidade ###

Mensagempor MarceloFantini » Seg Jan 04, 2010 15:59

Boa tarde Evaldo!

No primeiro problema, como ele não afirmou nada, suponha que a probabildade seja igual para ambas urnas, logo \frac{1}{2} para cada. Para a urna 1, a probabilidade de ser sorteada a bola vermelha é \frac{2}{5}. Como ele quer a probabilidade de que a bola sorteada seja da urna 1 e vermelha, temos:

P(\mbox{urna 1 e vermelha}) = \frac{1}{2} \times \frac{2}{5}

P(\mbox{urna 1 e vermelha}) = \frac{1}{5}.

No segundo problema, o espaço amostral tem 36 possibilidades. Contudo, existem apenas quatro pares que dão soma 5: (1,4); (2,3); (3,2); (4,1). Logo, a probabilidade pedida é:

P(\mbox{soma 5})=\frac{4}{36}

P(\mbox {soma 5})=\frac{1}{9}

Espero ter ajudado.

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: ### Probabilidade ###

Mensagempor Evaldo » Seg Jan 04, 2010 16:09

Fantini,
Muito obrigado viu, agradeço muito eu fiquei muito errolado nessas duas questões.
Um forte abraço.
Evaldo.
Há homens que lutam um dia, e são bons;
Há outros que lutam um ano, e são melhores;
Há aqueles que lutam muitos anos, e são muito bons;
Porém há os que lutam toda a vida
Estes são os imprescindíveis
Bertold Brecht
Evaldo
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Out 14, 2009 13:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências Contábeis
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.