• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação

Equação

Mensagempor mvoporto1986 » Ter Mai 20, 2014 21:35

Ajuda por favor, na questão abaixo! Grata

Lucas foi passar as férias no Ceará. Lá verificou que, se gastasse R$ 80,00 por dia, poderia permanecer de férias um dia a mais do que se gastasse R$ 90,00. Quanto Lucas possuía?
mvoporto1986
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Mai 20, 2014 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Letras Português
Andamento: formado

Re: Equação

Mensagempor Russman » Qua Mai 21, 2014 19:15

Equacione o problema. Sempre que existir uma quantidade que você busca conhecer a tome como conhecida! Isto é, a chame de uma incógnita qualquer. Por exemplo, diga que a quantidade de dias da viagem é x. Se ele gastar r reais por dia de viagem então a quantidade TOTAL de dinheiro que gastará será Q tal que

Q = r. x

Certo?

Agora, como estamos estudando DUAS situações diferentes( a de viajar gastando 80 reais/dia e de viajar gastando 90 reais/dia) vamos chamar de x_1 a quantidade de dias da viagem a 80 reais/dia e de x_2 a quantidade de dias para a viagem de 90 reais/dia. Já que a quantidade de dinheiro que ele possui é fixa, isto é, Q_1 = Q_2 (índices análogos aos índices de x), então

Q_1 = Q_2 \Rightarrow r_1 x_1 = r_2 x_2 ( equação1)

Note que as quantidades r_1 e r_2 são conhecidas, são dadas pelo enunciado.

A outra informação crucial para a solução do problema é :

mvoporto1986 escreveu:se gastasse R$ 80,00 por dia, poderia permanecer de férias um dia a mais do que se gastasse R$ 90,00.


Ou seja, na linguagem das incógnitas que criamos, podemos escrever x_1 = x_2 + 1 (equação2).
Portanto, reunindo esta equação a equação1 que desenvolvemos anteriormente obtemos um sistema linear de equações da forma

80 x_1 - 90 x_2 = 0
x_1 - x_2 = 1.

onde substituímos os r's pelos seus devidos valores.

O jeito de solucionar esse sistema é opcional. Eu sugiro que você isole x_1 na segunda equação ( bem como está na "equação1") e susbtitua na 1° equação. Fazendo isso você deve calcular x_1 = 9 e x_2 = 8.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Equação

Mensagempor mvoporto1986 » Qua Mai 21, 2014 20:16

Muuuuuito obrigada! :)
mvoporto1986
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Mai 20, 2014 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Letras Português
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.