por fcomex » Seg Mai 19, 2014 22:08
Caros,
Como resolvo essa adição de fração algébrica?

Fiquei hora em cima desse problema e não consegui resolver. Agradeço se puderem me ajudar.
-
fcomex
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Seg Mai 19, 2014 21:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: formado
por Russman » Seg Mai 19, 2014 22:18
É só usar a propriedade

para c e d não nulos.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por fcomex » Seg Mai 19, 2014 23:54
Certo, desculpe mas não especifiquei melhor minha dificuldade. Já apliquei a propriedade e obtive:

e não consegui avançar mais. Como prossigo?
-
fcomex
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Seg Mai 19, 2014 21:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: formado
por Russman » Ter Mai 20, 2014 00:20
Bom, você esta somando e a resposta é essa. O que eu vejo de
simplificação que se pode fazer é notar que

. Daí,

Mas, sabemos que

. Verifique! De fato, para quaisquer Reais

e

vale que

.
Assim,

se

Acho que era isso que você queria, certo?
Usando a propriedade da soma você também poderia chegar a esse resultado. Basta tentar dividir o polinômio cúbico obtido do numerador por

ou

.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por fcomex » Ter Mai 20, 2014 00:48
É isso mesmo! Muito obrigado.
Amigo, não querendo abusar da boa vontade, não entendi bem como utilizar a propriedade da soma que vc indicou como forma alternativa. Pode me esclarecer?
Obrigado novamente.
-
fcomex
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Seg Mai 19, 2014 21:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: formado
por Russman » Ter Mai 20, 2014 23:50
fcomex escreveu:É isso mesmo! Muito obrigado.
Amigo, não querendo abusar da boa vontade, não entendi bem como utilizar a propriedade da soma que vc indicou como forma alternativa. Pode me esclarecer?
Obrigado novamente.
Note que o numerador da fração obtida tem como raiz

. De fato,

Assim, você o pode dividir por

e obterá que

Mas também

. Daí,

Já o denominador sabemos que, já que o obtivemos a partir daí,

.
Portanto, a fração se torna

para

.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Fração Algébrica
por Lucio » Qua Dez 21, 2011 07:48
- 3 Respostas
- 2048 Exibições
- Última mensagem por fraol

Qua Dez 21, 2011 22:31
Polinômios
-
- Fração algébrica
por LuizCarlos » Sex Abr 20, 2012 13:09
- 5 Respostas
- 2153 Exibições
- Última mensagem por Cleyson007

Sex Abr 20, 2012 17:44
Álgebra Elementar
-
- Re: Fração algébrica
por LuizCarlos » Sáb Abr 21, 2012 09:10
- 5 Respostas
- 2437 Exibições
- Última mensagem por DanielFerreira

Sáb Abr 21, 2012 16:44
Álgebra Elementar
-
- Fração algébrica
por LuizCarlos » Sáb Abr 21, 2012 19:04
- 6 Respostas
- 2686 Exibições
- Última mensagem por Russman

Sáb Abr 21, 2012 20:40
Álgebra Elementar
-
- Divisão de fração algébrica
por lucas7 » Seg Fev 21, 2011 18:09
- 3 Respostas
- 2303 Exibições
- Última mensagem por lucas7

Seg Fev 21, 2011 22:16
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.