• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Trigonometria - Equações

Trigonometria - Equações

Mensagempor Fontelles » Qua Dez 09, 2009 01:46

Boa noite, pessoal! Sou novo por aqui. Este é o meu primeiro tópico. Estudo pela coleção do Gelson Iezzi - Trigonometria atualmente, e me deparo com algumas inconstâncias do gabarito dado.
A Questão que me atordoa no momento é a seguinte:
- Obtenha as soluções da equação: sen4x+ cos4x = 1
Respondi da seguinte forma:
sen4x + cos4x = 1
cos4x = 1 - sen4x
Sabe-se que: cos²x + sen²x = 1, logo,
sen²4x + cos²4x = 1
sen²4x + (1-sen4x)² = 1
sen²4x + 1 -2sen4x + sen²4x = 1
2sen²4x - 2sen4x = 0
2sen4x(sen4x - 1) = 0
sen4x= 0 ou sen4x=1
Para sen4x=0 => sen4x = sen0
4x = 0 + 2kpi => x = kpi/2
ou
4x = pi + 2kpi => x = pi/4 + kpi/2
Para sen4x = 1 => sen4x = sen(pi/2)
4x = pi/2 +2kpi => x = pi/8 + kpi/2
S={x € R | x = kpi/2 ou x = pi/4 + kpi/2 ou x = pi/8 + kpi/2}
Bom, como havia dito, o gabarito não corresponde à minha solução. O gabarito é este:
x = kpi/2 ou x = pi/8 + kpi/2
Alguém pode me dizer se sou eu ou o livro que está errado?
Fontelles
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Dez 09, 2009 01:23
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Trigonometria - Equações

Mensagempor Elcioschin » Qua Dez 09, 2009 12:05

Lembrando que 2*sena*cosa = sen2a

sen4x + cos4x = 1 ----> (sen4x + cos4x)² = 1² ----> sen²4x + cos²4x + 2*sen4x*cos4x = 1 ----> 2*sen4x*cos4x = 0 --->

sen8x = 0 ---> Temos duas soluções:

8x = 2kpi ----> x = kpi/4

8x = 2kpi + pi ----> 8x = (2k + 1)pi -----> x = (2k + 1)pi/8

Na primeira volta (para 0 =< k =< 8) temos:

k = 0 ----> x = 0 ou x = pi/8
k = 1 ----> x = pi/4 ou x = 3pi/8
k = 2 ----> x = pi/2 ou x = 5pi/8
k = 3 ----> x = 3pi/4 ou x = 7pi/8
k = 4 ----> x = pi ou x = 9pi/8
k = 5 ----> x = 5pi/4 ou x = 11pi/8
k = 6 ----> x = 3pi/2 ou x = 13pi/8
k = 7----> x = 7pi/4 ou x = 15pi/8
k = 8 ----> x = 2pi


Os arcos variam de pi/8, logo a solução geral é ----> x = kpi/8
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Trigonometria - Equações

Mensagempor Fontelles » Qua Dez 09, 2009 18:16

Elcioschin, você pode me mostrar onde errei, por favor?
Fontelles
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Dez 09, 2009 01:23
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Trigonometria - Equações

Mensagempor Elcioschin » Qua Dez 09, 2009 18:56

Fontelles

Você não errou. Você somente deixou de apresentar a resposta na forma mais adequada.

Vou copiar o final da sua demonstração e mostrar as alterações necessárias em vermelho:

sen4x = 0 ou sen4x =1

Para sen4x = 0 => sen4x = sen0

4x = 0 + 2kpi => x = kpi/2
ou
4x = pi + 2kpi => x = pi/4 + kpi/2 ----> x = (2k + 1)pi/4

Para sen4x = 1 => sen4x = sen(pi/2)
4x = pi/2 + 2kpi => x = pi/8 + kpi/2 ----> x = (4k + 1)pi/8

Note agora, que, na sua 1ª resposta ----> x = kpi/2 = 4kpi/8 ----> Múltiplos de pi/8
Note também que, na sua 2ª resposta ---> x = (2k + 1)pi/4 = 2*(2k + 1)pi/8 ---> Múltiplos de pi/8
E finalmente na sua 3ª resposta ----> x = (4k + 1)pi/8 ----> Múltiplos de pi/8


S={x € R | x = kpi/8}

Assim, a resposta do livro não está errada. Mas poderia ser uma resposta mais simples:

x = Kpi/8 ----> Para K = 4k ----> x = kpi/2 ---> Resposta do livro

Outra resposta do livro ---> x = pi/8 + kpi/2 ----> x = (4k + 1)*(pi/8) ----> múltiplo de pi/8 ----> Kpi/8

Deu para entender ?
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Trigonometria - Equações

Mensagempor Fontelles » Qua Dez 09, 2009 19:19

Uhhhh! Valeu, Elcioschin!
Fontelles
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Dez 09, 2009 01:23
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?