por luiz1903 » Seg Fev 10, 2014 17:51
Boa tarde a todos, sou novo no fórum e gostaria de tirar umas dúvidas. A questão pede para vc dizer se a série converge ou diverge usando o teste da comparação. Teve tres questões que eu não consegui fazer:

Sempre o somatório de n=1 até infinito.
Obrigado
-
luiz1903
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Fev 10, 2014 17:40
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia mecânica
- Andamento: cursando
por e8group » Seg Fev 10, 2014 20:41
Boa noite . O que você tentou , quais as dúvidas ?
A primeira pode compara com a série de termos constantes iguais a 1 (pois ,

, para todo n) .
Na terceira , para qualquer

fixado , sempre

para

suficientemente grande .
Basta fixar qualquer

e comparar a série

com a geométrica \sum (1/a)^n [/tex] .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por luiz1903 » Ter Fev 11, 2014 09:57
Obrigado por responder.
Na primeira eu peguei a série (6/5)^n, q é uma serie divergente e tem sempre bn<an (an é a série estudada). Sendo assim, an é divergente. Isso está correto?
Não entendi pq vc disse q n!>2^n. Eu preciso de uma série onde bn>an. Supondo a série 1/2^n, os primeiros termos dessa série serão 1/2, 1/4, 1/8... enquanto que os primeiros termos da série 1/n! serão 1/1, 1/2, 1/6 de forma que bn<an
-
luiz1903
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Fev 10, 2014 17:40
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia mecânica
- Andamento: cursando
por e8group » Ter Fev 11, 2014 17:33
Observe que se

, isto automaticamente implica

(em geral para n suficientemente grande , entretanto , para caso particulares , como

por exemplo .Neste caso basta impor que

) .
Complementando , se a série

converge

também converge .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Sequências
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [SÉRIE] teste de comparação para convergência
por magellanicLMC » Ter Jan 28, 2014 20:47
- 5 Respostas
- 5141 Exibições
- Última mensagem por e8group

Sáb Fev 01, 2014 19:03
Sequências
-
- [SÉRIE] teste da integral
por magellanicLMC » Qua Fev 05, 2014 20:38
- 1 Respostas
- 1703 Exibições
- Última mensagem por e8group

Qui Fev 06, 2014 11:55
Cálculo: Limites, Derivadas e Integrais
-
- Duvida de Série pelo teste da integral
por douglasnickson » Sáb Ago 20, 2016 13:41
- 0 Respostas
- 3983 Exibições
- Última mensagem por douglasnickson

Sáb Ago 20, 2016 13:41
Sequências
-
- [Série] Calcular valor de série tendo outra como referência
por robmenas » Dom Abr 07, 2019 14:35
- 0 Respostas
- 8535 Exibições
- Última mensagem por robmenas

Dom Abr 07, 2019 14:35
Sequências
-
- [série de Euler / problema da Basiléia] Série de Fourier
por Burnys » Qua Jul 16, 2008 14:34
- 4 Respostas
- 8876 Exibições
- Última mensagem por admin

Qui Jul 17, 2008 00:33
Sequências
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.