• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo] Integral

[Cálculo] Integral

Mensagempor Pessoa Estranha » Sáb Jan 11, 2014 17:35

Olá, pessoal!

Por que a minha resolução do seguinte exercício está errada?

\int_{}^{}\frac{sen(x)}{{cos}^{3}(x)}dx

Pelo Teorema da Mudança de Variável, temos:

u = tg(x) \rightarrow du = \frac{1}{{cos}^{2}x} dx

Daí,

\int_{}^{}\frac{sen(x)}{{cos}^{3}(x)}dx = \int_{}^{}tg(x)\frac{1}{{cos}^{2}(x)}dx = \int_{}^{} (u) du = \frac{{u}^{2}}{2} + k = \frac{{tg}^{2}(x)}{2} + k

Obrigada!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Cálculo] Integral

Mensagempor anderson_wallace » Sáb Jan 11, 2014 22:34

Sua resolução, assim como sua resposta final estão corretas!

Por que vc acha que está errada?
anderson_wallace
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Seg Dez 30, 2013 17:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ciência e Tecnologia
Andamento: cursando

Re: [Cálculo] Integral

Mensagempor Pessoa Estranha » Sáb Jan 11, 2014 23:31

Então, é que no livro a resposta é outra. Daí, para confirmar, eu usei o "wolframalpha", mas deu a mesma resposta que a do livro.

Obrigada por responder!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Cálculo] Integral

Mensagempor anderson_wallace » Dom Jan 12, 2014 13:30

É muito comum acontecer isso quando resolvemos integrais porque geralmente para a integral de uma mesma função há várias formas de resolver. Cada modo de resolver chega numa função equivalente, mas que em muitas vezes não são expressas da mesma forma.
Nesse caso específico além da substituição simples vc poderia simplificar e usar uma fórmula de recorrência.
Lembrando que integração e derivação são processos inversos, um dos melhores modos de conferir se sua resposta está certa é deriva-la.

\frac{d}{dx}{(\frac{{tg}^{2}x}{2}+k)}=\frac{1}{2}2tg(x)(\frac{d}{dx}tg(x))=tg(x){sec}^{2}(x)=\frac{sen(x)}{cos(x)}\frac{1}{{cos}^{2}(x)}=\frac{sen(x)}{{cos}^{3}(x)}

De fato, sua resposta está certa.
anderson_wallace
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Seg Dez 30, 2013 17:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ciência e Tecnologia
Andamento: cursando

Re: [Cálculo] Integral

Mensagempor Pessoa Estranha » Dom Jan 12, 2014 13:44

Está bem! Muito Obrigada pela ajuda! :y: :-D
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Cálculo] Integral

Mensagempor Guilherme Pimentel » Seg Jan 13, 2014 06:04

Pessoa Estranha escreveu:Olá, pessoal!

Por que a minha resolução do seguinte exercício está errada?

\int_{}^{}\frac{sen(x)}{{cos}^{3}(x)}dx

Pelo Teorema da Mudança de Variável, temos:

u = tg(x) \rightarrow du = \frac{1}{{cos}^{2}x} dx

Daí,

\int_{}^{}\frac{sen(x)}{{cos}^{3}(x)}dx = \int_{}^{}tg(x)\frac{1}{{cos}^{2}(x)}dx = \int_{}^{} (u) du = \frac{{u}^{2}}{2} + k = \frac{{tg}^{2}(x)}{2} + k

Obrigada!

Note que:

tg^{2}(x) + 1=  sec^2(x)

e sua resposta se transforma na do WA. (corrigido)
Editado pela última vez por Guilherme Pimentel em Qua Jan 15, 2014 04:38, em um total de 1 vez.
Guilherme Pimentel
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Dom Jan 12, 2014 19:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Economia
Andamento: formado

Re: [Cálculo] Integral

Mensagempor Pessoa Estranha » Ter Jan 14, 2014 09:20

1+{sec}^{2}x = 1+\frac{1}{{cos}^{2}x} = \frac{{cos}^{2}x + 1}{{cos}^{2}x} = \frac{2{cos}^{2}x + {sen}^{2}x}{{cos}^{2}x} = \frac{{2-{sen}^{2}x}^{}}{{cos}^{2}x}

Desculpe, mas não consegui chegar no procurado.

Obrigada por responder! :)
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Cálculo] Integral

Mensagempor Pessoa Estranha » Ter Jan 14, 2014 09:24

{tg}^{2}x = \frac{{sen}^{2}x}{{cos}^{2}x} = \frac{1-{cos}^{2}x}{{cos}^{2}x} = {sec}^{2}x - 1

Olha, se eu não errei nas manipulações, o certo não é assim?
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Cálculo] Integral

Mensagempor Man Utd » Ter Jan 14, 2014 21:49

Pessoa Estranha escreveu:{tg}^{2}x = \frac{{sen}^{2}x}{{cos}^{2}x} = \frac{1-{cos}^{2}x}{{cos}^{2}x} = {sec}^{2}x - 1

Olha, se eu não errei nas manipulações, o certo não é assim?




Vc está certa.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Cálculo] Integral

Mensagempor Pessoa Estranha » Ter Jan 14, 2014 22:28

Obrigada! :y:

Obrigada a todos que me ajudaram neste tópico!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 88 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D