• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites e Derivadas

Limites e Derivadas

Mensagempor jeff_95 » Sáb Nov 16, 2013 19:22

Exercício do Stewart

Seja a, b, c, e d constantes tais que

\lim_{\Delta x\to0}\frac{a{x}^{2}+sen{(bx)}+sen{(cx)}+sen{(dx)}}{3{x}^{2}+5{x}^{4}+7{x}^{6}} = 8

encontre o valor da soma a+b+c+d

resposta = 24
jeff_95
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sáb Nov 16, 2013 19:00
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecânica
Andamento: cursando

Re: Limites e Derivadas

Mensagempor e8group » Sáb Nov 16, 2013 21:19

Uma possível solução (não necessariamente está correta ).


Se b = c = d = 0 , o limite dado se resume a \lim_{x\to 0 }  \frac{a}{3 + 5x^2 + 7x^4} = a/3   = 8  \implies a+b+c+d = 24 . Agora suponha b, c, d \neq 0 .Neste caso ,

Podemos reescrever o limite a ser calculado sob a forma

\lim_{x\to 0 }  \left( \frac{ax+ b \dfrac{sin(bx)}{bx} + c \dfrac{sin(cx)}{cx} + d \dfrac{sin(dx)}{dx}} {3x + 5x^3 + 7x^5} \right )  (*) .

Pelo que
lim_{x\to 0 } ax+ b  \dfrac{sin(bx)}{bx} + c  \dfrac{sin(cx)}{cx} + d  \dfrac{sin(dx)}{dx} = b+c+d existe e é finito e \lim_{x\to 0 } 3x + 5x^3 + 7x^5 =  0 , concluímos que o limite (*) não é finito, contradição ! Portanto , b=c=d=0 e a+b+c+d = 24 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limites e Derivadas

Mensagempor jeff_95 » Dom Nov 17, 2013 00:56

Valeu cara :)
Esse stewart tem uns exercicios de foder
jeff_95
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sáb Nov 16, 2013 19:00
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecânica
Andamento: cursando

Re: Limites e Derivadas

Mensagempor e8group » Dom Nov 17, 2013 12:05

De nada . Mas a resolução está incompleta, apesar do limite da expressão do numerador de (*) existir e ser finito , a saber o limite desta expressão quando x tende a zero é o número real b+c+d que pode ser nulo mesmo considerando b,c,d \neq 0 , e caso b+c+d = 0 não podemos dizer nada sobre o limite (*) tendo em conta que o mesmo apresentar forma indeterminada "0/0" , portanto devemos também supor b+c+d \neq 0 bem como b,c,d \neq 0 e chegar em absurdo ,conforme já vimos.

OBS_1 .:

Não tenho 100% certeza se podemos afirmar que \lim_{x\to a} p(x)/q(x) = \pm \infty se ocorrem as duas situações :
\lim_{x\to a } p(x) existe e é um número finito não nulo , digamos l , e \lim_{x\to a } q(x) = 0
. Vou pensar sobre isto .

OBS_2 :

O limite a ser calculado apresenta forma indeterminada "0/0" , talvez seria adequado utilizar a regra de L'hospital .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limites e Derivadas

Mensagempor jeff_95 » Dom Nov 17, 2013 18:52

Pois é, se admitirmos que a não é nulo e aplicarmos a regra de L´Hospital 2x sobra 2a como constante no numerador e 6 no denominador, e para o limite resultar em 24, a unica hipótese que se encaixa no problema é a de que b, c e d são nulos. Se as variáveis nos senos estivessem elevadas ao quadrado, daí sim poderíamos considerar b, c e d não nulos.
jeff_95
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sáb Nov 16, 2013 19:00
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecânica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.