• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinar a equação da esfera!!!! Ajuda

Determinar a equação da esfera!!!! Ajuda

Mensagempor anapmarinho » Dom Out 20, 2013 17:25

Como eu resolvo o exercício?

Determine a equação da esfera que passa pelos pontos A=(2,3,-2), B=(1,0,-2) e C=(5,-1,-3) e possui centro no plano x-y+2z=-6
anapmarinho
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Out 20, 2013 17:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia telecomunicações
Andamento: cursando

Re: Determinar a equação da esfera!!!! Ajuda

Mensagempor e8group » Ter Out 22, 2013 20:22

Pensei da seguinte forma . Chamamos de \pi o plano dado . E suponhamos que M =(a,b,c) \in \pi seja o ponto médio da esfera .Ora ,se M =(a,b,c) \in \pi, então suas coordenadas satisfaz a equação do plano que é :

x-y+2z = -6 . Logo ,

a -b +2c = - 6 .

Além disso , a esfera é o lugar geométrico dos pontos equidistantes do ponto fixo M . Assim , um ponto P= (x,y,z) pertence a esfera se, e somente se ,

d(P,M) =  \sqrt{(x-a)^2 + (y-b)^2 + (z-c)^2 } = r = \text{constante} , ou de forma equivalente

(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2 .Por outro lado ,

utilizando os pontos dados , temos

r^2 = [d(A,M)]^2 =  [d(B,M)]^2 ] =  [d(C,M)]^2 ] , ou seja ,

r^2 = (2-a)^2 + (3-b)^2 + (2-c)^2  =  (1-a)^2 + (-b)^2 + (-2-c)^2  = (5-a)^2 + (-1-b)^2 + (-3-c)^2 . Através da igualdade (2-a)^2 + (3-b)^2 + (2-c)^2  =  (1-a)^2 + (-b)^2 + (-2-c)^2 e tendo em vista que os termos a^2
,b^2,c^2 em ambos lados da igualdade se cancelem , obteremos :

4 - 4a + 9 -6b + 4 -4c = 1 -2a + 4 + 4c e isolando uma das variáveis como por exemplo "b" , segue

b = 2-a/3-(4 c)/3 , mas lembrando que a -b +2c = - 6, ou seja , b = a+2c - 6 ,então ,

2-a/3-(4 c)/3 = a+2c - 6 o que implica c = 12/5-(2 a)/5, substituindo esta expressão em b = a+2c - 6 , obterá b = 1/5 (-6+a) . Encontramos então as variáveis c,b em função de a . Para determinar a . Basta substituir c,b em a -b +2c = - 6 .

Tente concluir e comente as dúvidas .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?