• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[m.d.c.] Dúvida simples

[m.d.c.] Dúvida simples

Mensagempor IsadoraLG » Qua Set 25, 2013 20:06

Existem aquelas regrinhas para saber a divisibilidade dos números: um divisor de 2 termina com número de par, divisor
de 3 basta somar os números e dar algum divisível de 3, por 6 deve ser divisível ao mesmo tempo por 2 e 3, por 4 basta olhar os
dois últimos digítos do número, por 5 se termina em 5 ou 0...
Mas neste exercício de máximo divisor comum, a divisão ocorre pelo número primo 7, e não entendi o que eu deveria ter
observado para "captar" que este era o número certo, eu simplesmente não sabia por qual número deveria dividir. Abaixo dá pra ver melhor isso que estou falando.

(EsPCEx) Qual o maior número pelo qual de deve dividir 1679 e 2352 para que os restos
sejam 41 e 77 respecivamente?

1679-41=1638
2352-77=2275
Agora, na conta para obter o mdc, é possível verificar a minha dúvida:
1638, 2275 /
7
234, 325 / 13
18, 25 /18
1, 25 / 25
1, 1
MDC(1638,2275) = 7x13 = 91
Se necessário, segue link da questão, é a núm. 10: http://www.matematicamuitofacil.com/mdc01.html
IsadoraLG
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Ter Ago 27, 2013 18:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão em Recursos Humanos
Andamento: formado

Re: [m.d.c.] Dúvida simples

Mensagempor Leticia_alves » Qua Set 25, 2013 20:22

Boa noite,
a resolução deste exercício é bem simples. Acredito que a resposta para a sua dúvida seja, o mdc (1638, 2275) é igual ao produto dos fatores comuns e com expoentes menores. Vejamos:
Fatorando 13638 (em números primos!): 1638 = 2 . 3² . 7 . 13.

Fatorando 2275 (em números primos!): 2275 = 5² . 7 . 13.

Assim, Considerando somente os fatores comuns com os menores expoentes, temos que: mdc(1638, 2275) = 7 . 13 = 91.
Que é a resposta do seu problema.

Em contrapartida, se o problema pedisse para calcular o mmc, o processo seria parecido:
1º: fatorar 1638 em fatores primos.
2º: fatorar 2275 em fatores primos.
3º: Considerar os fatores comuns e não comuns, com os maiores expoentes.

Assim, o mmc(1638, 2275) = 2 . 3² . 5² . 7 . 13 = 409950.

Bom, é isso. Se continuar com dúvida escreva de novo.
Espero ter ajudado!
Abraços
Leticia_alves
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Sex Jun 14, 2013 19:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [m.d.c.] Dúvida simples

Mensagempor IsadoraLG » Qui Set 26, 2013 16:51

Entendi sim! O que tinha complicado é que na resolução mostrava a fatoração dos dois números ao mesmo tempo, nesse caso eu não iria saber que era para fatorar por sete, mas fatorando separados como vc fez, ficou mais fácil mesmo! Obrigada! =3
IsadoraLG
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Ter Ago 27, 2013 18:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão em Recursos Humanos
Andamento: formado


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.